首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platinum nanoparticles with a diameter of 2-3 nm were prepared and used in combination with single-wall carbon nanotubes (SWCNTs) for fabricating electrochemical sensors with remarkably improved sensitivity toward hydrogen peroxide. Nafion, a perfluorosulfonated polymer, was used to solubilize SWCNTs and also displayed strong interactions with Pt nanoparticles to form a network that connected Pt nanoparticles to the electrode surface. TEM and AFM micrographs illustrated the deposition of Pt nanoparticles on carbon nanotubes whereas cyclic voltammetry confirmed an electrical contact through SWCNTs between Pt nanoparticles and the glassy carbon (GC) or carbon fiber backing. With glucose oxidase (GOx) as an enzyme model, we constructed a GC or carbon fiber microelectrode-based biosensor that responds even more sensitively to glucose than the GC/GOx electrode modified by Pt nanoparticles or CNTs alone. The response time and detection limit (S/N = 3) of this biosensor was determined to be 3 s and 0.5 microM, respectively.  相似文献   

2.
In this paper we have studied the adsorption properties of various bio-active systems onto the surface of carbon nanofibers (CNF) synthesized by chemical vapor deposition (CVD). Amino acids (alanine, aspartic acid, glutamic acid) and glucose oxidase (GOx) were adsorbed on CNF and the results were compared with those obtained when activated carbon (AC) was used as support. CNF and AC properties (hydrophilic or hydrophobic properties) were characterized by the pH value, the concentration of acidic/basic sites and by naphthalene adsorption. CNF with immobilized GOx was additionally investigated as a highly sensitive glucose biosensor. An amperometric method was used in an original manner to detect the changes in the specific activity of GOx, immobilized longer time on CNF. The method demonstrates that not the whole enzyme adsorbed onto CNF can catalyze the oxidation of glucose from the solution.  相似文献   

3.
Room-Temperature Growth and Applications of Carbon Nanofibers: A Review   总被引:1,自引:0,他引:1  
$hboxAr^+$ion bombardment of carbon surfaces (both bulk carbon and carbon-coated substrates) induced the growth of conical protrusions, and either aligned or nonaligned carbon nanofibers (CNFs) grew on the tips without any catalyst even at room temperature. CNFs thus grown were 20$sim$50 nm in diameter and$hbox0.2sim hbox10 muhbox m$in length. Very interestingly, no CNF grew without cone bases, and more than one CNF never grew on the respective cone tips. The solely standing and densely distributed CNFs were successfully applied to CNF-based scanning probe microscope (SPM) tips and field electron emission (FEE) sources, respectively. Since the myriad applications are possible, sputter-induced CNFs are believed to be quite promising as one-dimensional nanomaterials.  相似文献   

4.
The effect of heat treatment of carbon nanofibers (CNFs) on the mechanical properties of CNF (Ni/Y)–Cu composites was investigated. CNF (Ni/Y)–Cu composite powder mixtures were prepared by a combination of in situ chemical vapor deposition (CVD) and co-deposition processes. The in situ CNF (Ni/Y)–Cu powder synthesized by CVD was subject to heat treatment at temperatures ranging from 700 to 1,000 °C. The morphology and quality of CNFs were characterized by transmission electron microscope, scanning electron microscope, and Raman spectroscopy. Heat treatment can improve the CNFs by eliminating the amorphous carbon and disordered graphite. Bulk composites containing various fractions of CNFs were fabricated from the powder by cold pressing and sintering followed by repressing. With the same fraction of CNFs (2.5 wt%), the strengthening efficiency of the CNFs heat treated at 800 °C is 88% higher than that of as-synthesized CNFs. The strengthening mechanism of CNFs in the composites is discussed in detail.  相似文献   

5.
目的以竹粉为原料制备纳米纤维素,并将其作为基底材料制备纳米纤维素/碳纳米管/纳米银线复合电极,应用于柔性超级电容器。方法采用化学机械处理法,将竹粉通过化学处理以及研磨、超声等处理,制备成纳米纤维素悬浮液;分别将多壁碳纳米管和纳米银线超声分散于溶剂中;最后,通过层层自组装制备纳米纤维素/碳纳米管/纳米银线复合电极,同时,作为对照组,制备纳米纤维素/碳纳米管复合电极。结果纳米纤维素纤丝的直径大约为30~100 nm,相互之间缠绕成网状结构,是很好的支撑材料,纳米纤维素/碳纳米管/纳米银线复合电极具有很好的成膜性和电化学性能,在扫描速率为30 m V/s时,面积比电容达到77.95 m F/cm~2。结论以纳米纤维素为基底,通过层层自组装方法制备的纳米纤维素/碳纳米管/纳米银线复合电极具有较好的电化学性能,可作为柔性超级电容器的电极。  相似文献   

6.
原位生长纳米炭纤维/硅复合材料及其储锂性能   总被引:1,自引:1,他引:0  
采用催化化学气相沉积法在微米硅颗粒表面原位生长纳米炭纤维得到纳米炭纤维/硅复合材料.利用SEM,TEM和XRD表征了复合材料的表面形态和微观结构,并考察了其作为锂离子电池负极材料的循环性能.电化学测试表明:与纳米纤维/硅机械混合物相比,原位生长纳米炭纤维/硅复合材料具有更高的可逆容量(1042mAh/g)和更好的循环稳定性.根据SEM和交流阻抗分析结果,分析了纳米炭纤维/硅复合材料在充放电过程中的结构演变机制,其优异的电化学性能主要来源于原位生长纳米炭纤维与硅颗粒之间良好的接触性能.  相似文献   

7.
Journal of Materials Science - A carbon film functionalized with reduced graphene oxide (rGO) and Cu nanoparticles (NPs)-tipped carbon nanofibers (CNFs) was demonstrated to be a versatile electrode...  相似文献   

8.
An amperometric glucose biosensor has been developed using DNA as a matrix of Glucose oxidase (GOx) at Prussian-blue (PB)-modified glassy carbon (GC) electrode. GC electrode was chemically modified by the PB. GOx was immobilized together with DNA at the working area of the PB-modified electrode by placing a drop of the mixture of DNA and GOx. The response of the biosensor for glucose was evaluated amperometrically. Upon immobilization of glucose oxidase with DNA, the biosensor showed rapid response toward the glucose. On the other hand, no significant response was obtained in the absence of DNA. Experimental conditions influencing the biosensor performance were optimized and assessed. This biosensor offered an excellent electrochemical response for glucose concentration in micro mol level with high sensitivity and selectivity and short response time. The levels of the relative standard deviation (RSDs), (<4%) for the entire analyses reflected a highly reproducible sensor performance. Through the use of optimized conditions, a linear relationship between current and glucose concentration was obtained up to 4 x 10(-4) M. In addition, this biosensor showed high reproducibility and stability.  相似文献   

9.
Xing H  Sun L  Song G  Gou J  Hao YW 《Nanotechnology》2008,19(2):025704
Carbon nanomaterials in the form of paper sheets have been used as platforms to achieve multifunctionality. Combined with electrochemical deposition, room temperature synthesis of magnetic Ni coatings on individual carbon nanofibers (CNF) and/or carbon nanotubes (CNT) has been realized through solution penetration and ion diffusion. In addition to significant electrical conductivity improvement, the magnetic responses of the Ni coated carbon nanopaper sheets can be tuned within large ranges in terms of saturation magnetic field, remnant magnetization and coercivity. After being re-suspended in liquids, the magnetized CNFs/CNTs can be aligned with small external magnetic fields.  相似文献   

10.
Hierarchical carbon nanostructures based on ultra-long carbon nanofibers (CNF) decorated with carbon nanotubes (CNT) have been prepared using plasma processes. The nickel/carbon composite nanofibers, used as a support for the growth of CNT, were deposited on nanopatterned silicon substrate by a hybrid plasma process, combining magnetron sputtering and plasma-enhanced chemical vapor deposition (PECVD). Transmission electron microscopy revealed the presence of spherical nanoparticles randomly dispersed within the carbon nanofibers. The nickel nanoparticles have been used as a catalyst to initiate the growth of CNT by PECVD at 600°C. After the growth of CNT onto the ultra-long CNF, SEM imaging revealed the formation of hierarchical carbon nanostructures which consist of CNF sheathed with CNTs. Furthermore, we demonstrate that reducing the growth temperature of CNT to less than 500°C leads to the formation of carbon nanowalls on the CNF instead of CNT. This simple fabrication method allows an easy preparation of hierarchical carbon nanostructures over a large surface area, as well as a simple manipulation of such material in order to integrate it into nanodevices.  相似文献   

11.
杨旖旎  冯前  李大纲 《包装工程》2019,40(1):100-105
目的以纳米纤维素/碳纤维复合膜为导电基底,制备纳米纤维素/碳纤维-聚苯胺/碳纳米管超级电容器电极。方法利用超声处理和真空抽滤制备纳米纤维素/碳纤维复合膜;利用原位聚合法制备聚苯胺和聚苯胺/碳纳米管复合材料;通过真空抽滤法制备纳米纤维素/碳纤维-聚苯胺电极和纳米纤维素/碳纤维-聚苯胺/碳纳米管电极。结果在纳米纤维素/碳纤维复合膜中,碳纤维形成了互穿导电网络结构,是良好的超级电容器电极导电基体;纳米纤维素/碳纤维-聚苯胺/碳纳米管电极具有良好的电化学性能,在扫描速率为5 mV/s的条件下,质量比电容为380.74 F/g,且在1000次循环测试后,电容保留率为88.05%。结论以纳米纤维素/碳纤维导电复合膜作为基体制备的纳米纤维素/碳纤维-聚苯胺/碳纳米管电极具有良好的电化学性能,可以作为超级电容器电极。  相似文献   

12.
Carbon nanofibers (CNFs) modified with Pt nanoparticles have been prepared using a new RF sputtering instrument called a “polygonal barrel-sputtering” system. The prepared samples were characterized by optical microscopy, field emission scanning microscopy (FE-SEM), inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray fluorescence (XRF), X-ray diffraction (XRD), and transmission electron microscopy (TEM) with energy-dispersive X-ray spectrometry (EDS). When only the CNFs were placed in the system, large CNF aggregates with sizes of 5-15 mm were observed and Pt was deposited non-uniformly. In addition, microscopic observations revealed that ca. 40% of the CNFs were still unmodified. In contrast, when pieces of bent columnar stainless steel were placed in the system with the CNFs, large CNF aggregates were not observed in the Pt deposited sample. In this sample, CNFs modified with highly dispersed Pt nanoparticles were obtained successfully, and unmodified CNFs were absent. The sizes of the Pt nanoparticles were in a narrow range of 1.7-3.5 nm, and their mean size was 2.5 nm.  相似文献   

13.
Polypyrrole nanoparticles were successfully synthesized in cetyltrimethyl ammonium bromide (CTAB)/hexanol/water reverse micelle. The morphology and particle size of the obtained nanoparticles were characterized with transmission electron microscope (TEM) and scanning electron microscopy (SEM). Glucose biosensors were formed with glucose oxidase (GOx) immobilized in conducting composite material consisting of polypyrrole nanoparticles and ethyl cellulose. The effects of reaction conditions such as molar ratio of polypyrrole nanoparticles to ethyl cellulose, working voltage, glucose concentration, temperature and solution pH on the electrochemical response of the GOx electrode were studied. Experimental results showed that the linear range of GOx electrode was 1.0 x 10(-6)-6 x 10(-3) mol/L and the detection limit was 1.0 x 10(-7) mol/L. The electrode exhibited fine repeatability and selectability, and its lifetime was greater than one month. AFM showed that the surface of conducting composite material-glucose oxidase electrode's presents uniform granular after washing paraffin wax with cyclohexane, which was favorable for enzyme-catalyzed reaction.  相似文献   

14.
Solid carbon nanofibers (CNFs), hollow CNFs, metal-filled carbon nanotubes (CNTs), and carbon onions were synthesized by chemical vapor deposition (CVD) using a novel Ni/Y catalyst supported on Cu at different reaction temperatures. XRD, TEM, and EDS analyses reveal that the structure of the catalyst changes with increasing reaction temperature. The evolution of Y doped in Ni directly influences the morphologies of the products. At relatively low temperature, Y is doped in Ni and causes CNF formation, and when the temperature is increased to above 650 °C, Y separates from Ni as yttria nanoparticles and carbon onions are synthesized. The catalyst evolution and carbon nanostructure growth mechanism are discussed in detail.  相似文献   

15.
Platinum (Pt) nanoparticles were electrodeposited within multiwalled carbon nanotubes-Nafion-glucose oxidase (MWNTs-Nafion-GOx) nanobiocomposite by a potentiostatic method. The morphology and nature of the resulting MWNTs-Pt-Nafion-GOx nanobiocomposite were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS). The electrocatalytic properties of the MWNTs-Pt-Nafion-GOx nanobiocomposite film modified glassy carbon electrode were characterized by cyclic voltammetry and amperometry in the presence of hydrogen peroxide. The glucose biosensor sensitivity was strongly influenced by the deposits of Pt nanoparticles and amount of GOx concentration within the MWNTs-Pt-Nafion-GOx nanobiocomposite film. The optimized glucose biosensor displayed a sensitivity of 640 nA mM(-1), a linear range of up to 4 mM, a detection limit of 4 microM, and a response time of less than 4 s at an operating potential of +500 mV versus Ag/AgCl (3 M KCl).  相似文献   

16.
In this paper the synthesis of three-dimensional hierarchical nanostructures by pyrolysis of acetylene to grow carbon nanofibers (CNFs) on carbon microfibers (CMFs) and glass microfibers (GMFs) is reported. The morphology and structure of the as-prepared CNFs were studied by scanning electron microscopy and high-resolution transmission electron microscopy. CNFs grown on both substrates typically exhibited two types of morphology: the coil-like CNFs with frequent change in orientation and the relatively straight and long CNFs with parallel graphene sheets. The ethanol pretreatment was effective at improving the yield and distribution of the as-grown CNFs on CMFs, but showed an adverse effect to the CNF growth on GMFs. The influence of different substrates and growth temperatures on CNF morphology and the possible growth mechanism for the observed microstructures was discussed.  相似文献   

17.
Biomimetically synthesized silica and conductive activated carbon nanofibers (CNFs) are used in a synergistic manner for the development of a novel electrochemical biosensor system. Poly(L-lysine) templated silica grows and encapsulates the CNF-immobilized enzyme generating a highly stabilizing nanostructured environment for the underlying protein. Concurrently, CNFs provide both the required surface area for the high-capacity enzyme immobilization required in biosensors as well as direct electron transfer to the inner platinum transducer. As a result, this silica/nanofiber superstructure is an ideal architecture for the development of electrochemical biosensor systems that can withstand exposure to extreme operational conditions, such as high temperatures or the presence of proteases. Acetylcholine esterase is used as the model catalyst and with the aid of spectroscopic data it is shown that the observed high operational stability of the biosensor is due to the direct interaction of the protein with the silica backbone, as well as due to the nanostructured enzyme confinement.  相似文献   

18.
以中间相沥青为碳质前躯体,采用自发泡法制得泡沫炭.为了提高比表面积,泡沫炭经质量分数65%的HNO3氧化后,采用化学气相沉积法在其表面生长一层纳米炭纤维(CNFs).泡沫炭表面生长一层CNFs后,其比表面积和导热系数分别由40m2/g、107W/mK相应提高到198 m2/g、125W/mK.这种结构的CNFs/泡沫炭复合材料可以用作气相催化反应体系的催化剂载体.  相似文献   

19.
Gold nanoparticles (AuNPs) have been self-assembled onto electrochemically deposited polyaniline (PANI) films on indium-tin-oxide (ITO) coated glass plates to fabricate glucose biosensor. The covalent immobilization of glucose oxidase (GOx) in the near vicinity of gold nanoparticles has been obtained using N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS), chemistry between amino groups of PANI and COOH groups of GOx. These AuNPs-PANI/ ITO and GOx/AuNPs-PANI/ITO composite films have been characterized using Fourier transform infra red (FTIR) and cyclic voltammetry (CV) techniques, respectively. The fast electron transfer from the modified PANI surface to electrode is indicated by the observed increase in amperometric response current of these GOx/AuNPs-PANI/ITO bioelectrodes. These GOx/AuNPs-PANI/ITO bioelectrodes exhibit response time of 10 s, linearity from 50 to 300 mg/dl and show value of apparent Michaelis-Menten constant (Km(app)) of 2.2 mM.  相似文献   

20.
A conventional hydrothermal deposition process is used to graft ruthenium oxide (RuO2) nanoparticles onto carbon nanofibers (CNFs). The obtained RuO2 nanoparticles have an average diameter of 2 nm and are homogenously distributed on the CNF surfaces. Supercapacitors are fabricated using the resulting RuO2 grafted CNFs nanocomposite as the electrodes. The existence of CNFs leads to reduced contact resistance among the RuO2 nanoparticles and provides a network for fast electron transport, which then contributes to enhanced electrochemical performance. The enhancement is proportional to the RuO2 content and can be as high as 638% at a high sweep rate of 200 mV s−1, at which a capacitance is 155 F g−1. Stability of the RuO2-grafted CNF capacitor is also demonstrated by subjecting the capacitor to a potential sweep at 500 mV s−1 for 1000 cycles. Furthermore, the RuO2 grafted CNF capacitor exhibits a very short relaxation time of 0.17 s, which is desirable for high rate charge and discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号