首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Surface modification of cobalt chromium (Co–Cr) alloy is being investigated as a possible solution to the biomedical challenges arising from its usage. Self assembled monolayers (SAMs) of organophosphonic octadecylphosphonic acid (ODPA) were formed on the oxide surface of Co–Cr alloy by chemisorption using the solution deposition technique. High quality and well-ordered SAMs were formed which were characterized using Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), contact angle measurements and ellipsometry. The resulting monolayers were then exposed to in vitro conditions using phosphate buffered saline (PBS) solution. The samples were analyzed for a period of 1, 3, 7 and 14 days. The resulting samples were characterized using XPS, AFM and Contact angle measurements. XPS atomic concentrations and detailed high energy elemental scans gave an insight into the trends of elemental concentrations over the duration of the study. SAMs were found to be strongly bound to the oxide surface after PBS exposure. AFM gave the topographic details of SAMs presence by island formation before and after SAM formation and also over the duration of the PBS exposure. Contact Angle Measurements confirmed the hydrophobicity of the surface after SAM formation and indicated a slight disorder of the SAM alkyl chain upon exposure to PBS. Thus, ODPA SAMs were successfully coated on Cobalt Chromium (Co–Cr) alloy surface and were found to be stable and strongly bound after PBS exposure.  相似文献   

2.
Immobilization of biomaterials onto solid supports is a means of functionalizing materials for applications such as biosensing. Biologically active peptide (A-A-A-A-G-G-G-E-R-G-D)1 films were attached to N-hydroxy succinimide ester terminated self-assembled monolayers (SAM) which were covalently linked to a smooth silicon surface via Si–C bonds. The peptide films were characterized using electrical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The film structures were determined from examination of the capacitance and conductance dispersions with frequency. Analysis of XPS, EIS and FTIR after immobilization of the peptide film at pH 4 and 7 provided information on the extent of the activation and overall coupling efficiencies of the peptides to the N-hydroxy succinimide ester surface. The resulting film structure was markedly altered by attachment of the peptide at pH 4.  相似文献   

3.
Large area GO-Cd composite Langmuir-Blodgett monolayers were transferred onto Si substrate by introducing Cd(2+) ions into the subphase. The changes in the behaviour of the Langmuir monolayer isotherm in the presence of Cd(2+) ions are attributed to changes in the microstructure and density of the GO sheets on the subphase surface. The uptake of Cd onto the GO monolayers and the effect of subsequent sulphidation were investigated by AFM, FTIR, Raman, XPS and HRTEM techniques. The incorporation of Cd into the GO monolayers causes some overlapping of sheets and extensive formation of wrinkles. Sulphidation of the GO-Cd sheets results in the formation of uniformly distributed CdS nanocrystallites on the entire basal plane of the GO monolayers. The de-bonding of Cd with oxygen functional groups results in a reduction of the wrinkles. The GO sheets function primarily as a platform for the interaction of metal ions with oxygen functionalities and their structure and characteristic features are not affected by either uptake of Cd or formation of CdS.  相似文献   

4.
A new semisolid metal processing technology, rheo-diecasting (RDC) has been developed for production of Mg-alloy components with high integrity. The RDC process innovatively combines the dispersive mixing power of the twin-screw mechanism for creation of high quality semisolid slurry and the high efficiency, low cost nature of the high pressure die casting (HPDC) process for component shaping. AZ91D Mg-alloy was used to optimise the RDC process and to establish its advantages over both the HPDC process and other existing semisolid processing techniques. In this paper we present the RDC process for processing Mg-alloys and the resulting microstructure and mechanical properties of RDC AZ91D alloy. The solidification behaviour of the Mg-alloys in the RDC process and the co-relationships between microstructure and mechanical properties of the RDC AZ91D alloy are discussed. It was found that the RDC process is capable of producing Mg-alloy samples with close-to-zero porosity and a fine, uniform microstructure throughout the entire sample irrespective of the section thickness. Compared with those obtained by other existing processing techniques, the RDC samples have substantially improved or equivalent mechanical properties, with the tensile elongation showing more than 100% improvement.  相似文献   

5.
Mg-Y-RE alloy is potentially useful in biodegradable implants but the fast degradation rate in the physiological environment restrains actual applications. In order to enhance the corrosion resistance, aluminum and oxygen ion implantation is employed to modify the surface of the Mg-Y-RE alloy. X-ray photoelectron spectroscopy (XPS) is conducted to obtain elemental depth profiles and determine chemical state changes. Electrochemical impedance spectroscopy and potentiodynamic polarization are employed to investigate the electrochemical behavior in simulated body fluids (SBF). After polarization, the corroded surface is further studied by scanning electron microscopy (SEM). The results indicate Al and O ion implantation produces an Al2O3-containing protection layer which improves the corrosion resistance of Mg-Y-RE alloy. After the surface treatment, localized corrosion becomes the dominant corrosion mechanism instead of general corrosion.  相似文献   

6.
This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D3, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence.  相似文献   

7.
For immobilization of proteins onto surfaces in a specific and controlled manner, it is important to start with a well-defined surface that contains specific binding sites surrounded by a nonfouling background. For immobilizing histidine-tagged (his-tagged) proteins, surfaces containing nitrilotriacetic acid (NTA) headgroups and oligo(ethylene glycol) (OEG) moieties are a widely used model system. The surface composition, structure, and reactivity of mixed NTA/OEG self-assembled monolayers (SAMs) on Au substrates were characterized in detail using X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and surface plasmon resonance (SPR) biosensoring. XPS results for sequential adsorption of NTA thiols followed by OEG thiols showed that OEG molecules were incorporated into an incompletely formed NTA monolayer until a complete mixed SAM was formed. The surface concentration of NTA headgroups was estimated to be 0.9-1.3 molecule/nm2 in the mixed NTA/OEG monolayers, compared to 1.9 molecule/nm2 in pure NTA monolayers. Angle-dependent XPS indicated NTA headgroups were slightly reoriented toward an upright position after OEG incorporation, and polarization-dependent NEXAFS results indicated increased ordering of the alkane chains of the molecules. Nitrogen-containing and OEG-related secondary ion fragments from the TOF-SIMS experiments confirmed the presence of NTA headgroups and OEG moieties in the monolayers. A multivariate peak intensity ratio was developed for estimating the relative NTA concentration in the outermost (10 A) of the monolayers. SPR measurements of a his-tagged, humanized anti-lysozyme variable fragment (HuLys Fv) immobilized onto Ni(II)-treated mixed NTA/OEG and pure NTA monolayers demonstrated the reversible, site-specific immobilization of his-tagged HuLys Fv (108-205 ng/cm2) with dissociation rates (koff) between 1.0 x 10-4 and 2.1 x 10-5 s-1, both depending on the NTA surface concentration and orientation. The monolayers without Ni(II) treatment exhibited low nonspecific adsorption of his-tagged HuLys Fv (<2 ng/cm2).  相似文献   

8.
采用溶胶-凝胶法和离子束增强沉积法在医用NiTi合金表面制备TiO2薄膜以提高其生物相容性。利用X射线衍射(XRD)、原子力显微镜(AFM)和X光电子能谱(XPS)对薄膜的结构、表面形貌及组成进行了比较研究;电化学腐蚀实验表明,两种方法制备的TiO2薄膜对金属基体均起到一种保护膜的作用,能够提高医用金属材料在模拟体液中的抗腐蚀性;对薄膜表面固定肝素抗凝血分子进行研究发现,溶胶-凝胶法制备的TiO2薄膜表面能够获得较好的肝素固定效果。  相似文献   

9.
The surface properties of titanium alloy implants for improved osseointegration in orthopaedic and dental surgery have been modified by many technologies. Hydroxyapatite coatings with a facultative integration of growth factors deposited by plasma spraying showed improved osseointegration. Our approach in order to enhance osseointegration was carried out by a surface modification method of titanium alloy implants called plasma chemical oxidation (PCO). PCO is an electrochemical procedure that converts the nm‐thin natural occurring titanium‐oxide layer on an implant to a 5 µm thick ceramic coating (TiOB‐surface). Bioactive TiOB‐surfaces have a porous microstructure and were loaded with calcium and phosphorous, while bioinert TiOB‐surfaces with less calcium and phosphorous loadings are smooth. A rat tibial model with bilateral placement of titanium alloy implants was employed to analyze the bone response to TiOB‐surfaces in vivo. 64 rats were randomly assigned to four groups of implants: (i) pure titanium alloy (control), ii) titanium alloy, type III anodization, (iii) bioinert TiOB‐surface, and (iv) bioactive TiOB‐surface. Mechanical fixation was evaluated by pull out tests at 3 and 8 weeks. The bioactive TiOB‐surface showed significantly increased shear strength at 8 weeks compared to all other groups.  相似文献   

10.
The amine density of 3-aminopropyldimethylethoxysilane (APDMES) films on silica is controlled to determine its effect on DNA probe density and subsequent DNA hybridization. The amine density is tailored by controlling the surface reaction time of (1) APDMES, or (2) n-propyldimethylchlorosilane (PDMCS, which is not amine terminated) and then reacting it with APDMES to form a mixed monolayer. High-resolution X-ray photoelectron spectroscopy (XPS) is used to quantify silane surface coverage of both pure and mixed monolayers on silica; the XPS data demonstrate control of amine density in both pure APDMES and PDMCS/APDMES mixed monolayers. A linear correlation between the atomic concentration of N atoms from the amine and Si atoms from the APDMES in pure APDMES films allows us to calculate the PDMCS/APDMES ratio in the mixed monolayers. Fluorescence from attached DNA probes and from hybridized DNA decreases as the percentage of APDMES in the mixed monolayer is decreased by dilution with PDMCS.  相似文献   

11.
This study presents the in-vivo evaluation of Ti–13Nb–13Zr alloy implants obtained by the hydride route via powder metallurgy. The cylindrical implants were processed at different sintering and holding times. The implants' were characterized for density, microstructure (SEM), crystalline phases (XRD), and bulk (EDS) and surface composition (XPS). The implants were then sterilized and surgically placed in the central region of the rabbit's tibiae. Two double fluorescent markers were applied at 2 and 3 weeks, and 6 and 7 weeks after implantation. After an 8-week healing period, the implants were retrieved, non-decalcified section processed, and evaluated by electron, UV light (fluorescent labeling), and light microscopy (toluidine blue). BSE-SEM showed close contact between bone and implants. Fluorescent labeling assessment showed high bone activity levels at regions close to the implant surface. Toluidine blue staining revealed regions comprising osteoblasts at regions of newly forming/formed bone close to the implant surface. The results obtained in this study support biocompatible and osseoconductive properties of Ti–13Nb–13Zr processed through the hydride powder route.  相似文献   

12.
采用溶胶-凝胶法和离子束增强沉积法在医用NiTi合金表面制备TiO2薄膜以提高其生物相容性.利用X射线衍射(XRD)、原子力显微镜(AFM)和X光电子能谱(XPS)对薄膜的结构、表面形貌及组成进行了比较研究;电化学腐蚀实验表明,两种方法制备的TiO2薄膜对金属基体均起到一种保护膜的作用,能够提高医用金属材料在模拟体液中的抗腐蚀性;对薄膜表面固定肝素抗凝血分子进行研究发现,溶胶-凝胶法制备的TiO2薄膜表面能够获得较好的肝素固定效果.  相似文献   

13.
Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s --> pi* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in complex milieu (i.e., serum) were characterized by surface plasmon resonance (SPR) and (32)P-radiometric assays and reported in a related study (Gong, P.; Lee, C.-Y.; Gamble, L. J.; Castner, D. G.; Grainger, D. W. Anal. Chem. 2006, 78, 3326-3334.).  相似文献   

14.
Monolayers of methyl-undecanoate were constructed on silicon surfaces via a covalent Si-C bond. The molecular monolayers were characterized by high resolution electrical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and ellipsometry and displayed a densely packed monolayer. After formation of the monolayer, the methyl ester was hydrolyzed without noticeable change in the integrity of the monolayer. The carboxyl terminated organic layer was then reacted with (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide to form active N-hydroxy succinimide ester groups. The activation chemistry was confirmed by XPS and the substructure of the methyl-undecanoate carboxylic acid and the N-hydroxy succinimide ester terminated films were characterized using EIS. XPS and EIS spectra provided information on the chemical composition and substructure of the monolayers for each step in the chemical modification of the surface.  相似文献   

15.
建立多尺度模型阐明了镁合金薄板再结晶和织构演变机制.先用有限元法数值计算异步温轧工艺过程,得到了等效塑性应变、应变速率等结果,并以此作为初始边界条件引入基于位错密度演化的硬化方程,得到了 VPSC(Visco-Plastic Self-Consistent)粘塑性自洽模型、实现了 CA(Cellular Automat...  相似文献   

16.
β-Stabilized titanium (Ti) alloys containing non-toxic elements, particularly niobium (Nb), are promising materials for the construction of bone implants. Their biocompatibility can be further increased by oxidation of their surface. Therefore, in this study, the adhesion, growth and viability of human osteoblast-like MG 63 cells in cultures on oxidized surfaces of a β-TiNb alloy were investigated and compared with the cell behavior on thermally oxidized Ti, i.e. a metal commonly used for constructing bone implants. Four experimental groups of samples were prepared: Ti or TiNb samples annealed to 600 °C for 60 min in a stream of dry air, and Ti and TiNb samples treated in Piranha solution prior to annealing. We found that on all TiNb-based samples, the cell population densities on days 1, 3 and 7 after seeding were higher than on the corresponding Ti-based samples. As revealed by XPS and Raman spectroscopy, and also by isoelectric point measurements, these results can be attributed to the presence of T-Nb2O5 oxide phase in the surface of the alloy sample, which decreased its negative zeta (ζ)-potential in comparison with zeta (ζ)-potential of the Ti sample at physiological pH. This effect was tentatively explained by the presence of positively charged defects acting as Lewis sites of the surface Nb2O5 phase. Piranha treatment slightly decreases the biocompatibility of the samples, which for the alloy samples may be explained by a decrease in the number of defective sites with this treatment. Thus, the presence of Nb and thermal oxidation of β-stabilized Ti alloys play a significant role in the increased biocompatibility of TiNb alloys.  相似文献   

17.
使用光学显微镜(OM)、扫描电镜(SEM)、能谱分析(EDS)、硬度测试和拉伸性能测试等方法,研究了热处理对真空压铸NZ30K镁合金微观组织及力学性能的影响。结果表明:铸态合金的宏观组织分为表层区和心部区,表层区组织由细小α-Mg等轴晶和分布在晶界的Mg12Nd组成,心部区组织则由细小α-Mg等轴晶、粗大预结晶组织(ESCs)和分布在晶界的离异共晶Mg12Nd组成。在固溶处理过程中心部区晶粒的长大比表层区更为显著,晶界迁移速率与晶粒尺寸不均匀呈正相关性,满足晶粒长大模型v=M0 exp (-Q/RT) A (1/D1-1/D2)。合金的优化热处理工艺为540℃×6 h+200℃×8 h。与铸态合金(UTS=186.0±1.5 MPa,YS=131±2.5 MPa,EL=6.6±0.4%)相比,峰值时效态合金的抗拉强度和屈服强度分别提高到了223.6±4.1 MPa和172.8±2.9 MPa,但延伸率降低到了4.2±0.3%。其强度的提高主要得益于时效析出的片状纳米β"相能够有效地阻碍位错在基面上的滑移。铸态和热处理态合金的表层区断裂模式均为韧性断裂,而心部区的断裂模式在铸态下为准解理断裂、在固溶态下为解理断裂、在峰值时效态下为准解理断裂。  相似文献   

18.
LPCVD氮化硅薄膜的化学组成   总被引:2,自引:0,他引:2  
分别采用X光电子能谱(XPS)、俄歇电子能谱(AES)、傅立叶红外光谱(FTIR)以及弹性反冲探测(ERD)等方法,分析了三氯硅烷-氨气-氮气体系低压化学气相沉积(LPCVD)氮化硅(SiNx)薄膜的化学组成,并利用原子力显微镜(AFM)观察了SiNx薄膜的表面形貌.XPS分析结果表明,当原料气中氨气与三氯硅烷的流量之比小于3时获得富Si的SiNx薄膜,当流量之比大于4时获得近化学计量的SiNx薄膜(x=1.33).AES深度分析与XPS分析结果很好地吻合,在835cm-1产生的强红外吸收峰表明Si-N键的形成,ERD分析表明所制备SiNx薄膜中的氢含量很低(1.2at.%).AFM分析结果表明,所沉积的SiNx薄膜均匀、平整,薄膜的均方根粗糙度RMS仅为0.47nm.  相似文献   

19.
A new low modulus β Ti-Nb alloy with low elastic modulus and excellent corrosion resistance is currently under consideration as a surgical implant material. The usefulness of such materials can be dramatically enhanced if their surface structure and surface chemistry can be controlled. This control is achieved by attaching a self assembled monolayer (SAM) based on 11-chloroacetyl-1-undecylphosphonic acid, CAUDPA, to the surface and immobilization of a peptide to the monolayer. The SAM is characterized by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) at two different takeoff angles. The CAUDPA molecules were covalently bonded on the substrate in a configuration in which the phosphonic group turns toward the Ti45Nb while the acetyl chloride end group tail turns to the topmost surface. In such configuration sequential in situ reaction is possible by exchange between the chloride and a biological molecule. Such biological molecule is the arginine-glycine-aspartic acid-cysteine, RGDC, small amino acid sequence present in many molecules of the extracellular matrix. Preliminary cell culture in-vitro result shows an improvement of the response of osteoblast cells to Ti45Nb after the peptide immobilization.  相似文献   

20.
李杰  张会臣 《功能材料》2012,43(12):1574-1578
基于位错刻蚀理论利用溶液浸泡处理A1-Mg-Si合金在其表面形成微观粗糙表面结构,采用自组装技术在此表面制备FDTS自组装分子膜.采用X射线衍射仪、扫描电子显微镜和表面粗糙度仪对试样表面形貌进行了表征;采用接触角测量仪对试样表面接触角进行了测量.结果表明,试样经溶液浸泡处理和沉积自组装分子膜后,其表面润湿性实现了由亲水到超亲水再到超疏水的转变;改变溶液浸泡时间得到具有不同微观结构的表面,沉积自组装分子膜后得到的超疏水表面具有不同的滚动接触角,其表面黏附力具有明显差异.分析认为,超疏水表面的获得是溶液浸泡处理得到的粗糙表面结构和低表面能物质FDTS自组装分子膜共同作用的结果;表面黏附力的差异是试样表面微观形貌的不同造成水滴在其表面所处状态的差异引发的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号