首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents new systematic design methods of two types of output feedback controllers for Takagi–Sugeno (T–S) fuzzy systems, one of which is constructed with a fuzzy regulator and a fuzzy observer, while the other is an output direct feedback controller. In order to use the structural information in the rule base to decrease the conservatism of the stability analysis, the standard fuzzy partition (SFP) is employed to the premise variables of fuzzy systems. New stability conditions are obtained by relaxing the stability conditions derived in previous papers. The concept of parallel distributed compensation (PDC) is employed to design fuzzy regulators and fuzzy observers from the T–S fuzzy models. New stability analysis and design methods of output direct feedback controllers are also presented. The output feedback controllers design and simulation results for a nonlinear mass-spring-damper mechanical system show that these methods are effective.  相似文献   

2.
3.
4.
This paper considers zonotopic fault detection observer design in the finite-frequency domain for discrete-time Takagi–Sugeno fuzzy systems with unknown but bounded disturbances and measurement noise. We present a novel fault detection observer structure, which is more general than the commonly used Luenberger form. To make the generated residual sensitive to faults and robust against disturbances, we develop a finite-frequency fault detection observer based on generalised Kalman–Yakubovich–Popov lemma and P-radius criterion. The design conditions are expressed in terms of linear matrix inequalities. The major merit of the proposed method is that residual evaluation can be easily implemented via zonotopic approach. Numerical examples are conducted to demonstrate the proposed method.  相似文献   

5.
This paper mainly focuses on the problem of non-fragile H dynamic output feedback control for a class of uncertain Takagi–Sugeno fuzzy systems with time-varying state delay. Based on a new type of Lyapunov–Krasovskii functional without ignoring any subtle integral terms in the derivatives, a less conservative dynamic output feedback controller with additive gain variations is designed, which guarantees that the closed-loop fuzzy system is asymptotically stable and satisfies a prescribed H-performance level. Furthermore, the obtained parameter-dependent conditions are given in terms of solution to a set of linear matrix inequalities, which improve some existing relevant results. Finally, numerical examples are given to illustrate the effectiveness and merits of the proposed method.  相似文献   

6.
7.
8.
1IntroductionSingular systems have comprehensive practical back-ground such as power systems[1,2],social economicsystems[3],circuit systems[4],and so on.Great progress[5~7]has been made in the theory and its applicationssince1970s.On the other hand,control of delay systemshas been a topic of recurring interest over the past decadessince time_delays are often the main causes for instabilityand poor performance of systems and encounteredfrequently in various engineering systems.There exist anext…  相似文献   

9.
10.
This paper proposes output feedback controller design methods for uncertain piecewise linear systems based on piecewise quadratic Lyapunov function. The α-stability of closed-loop systems is also considered. It is shown that the output feedback controller design procedure of uncertain piecewise linear systems with α-stability constraint can be cast as solving a set of bilinear matrix inequalities (BMIs). The BMIs problem in this paper can be solved iteratively as a set of two convex optimization problems involving linear matrix inequalities (LMIs) which can be solved numerically efficiently. A numerical example shows the effectiveness of the proposed methods.  相似文献   

11.
This paper presents a novel control design technique in order to obtain a guaranteed cost fuzzy controller subject to constraints on the input channel. This guaranteed cost control law is obtained via multi-parametric quadratic programming. The result is a piecewise fuzzy control law where the state partition is defined by fuzzy inequalities. The parameters of the Lyapunov function can be obtained previously using Linear Matrix Inequalities optimization.  相似文献   

12.
13.
This paper addresses the problem of observer-based fault reconstruction for Takagi–Sugeno fuzzy systems. Two types of fuzzy learning observers are constructed to achieve simultaneous reconstruction of system states and actuator faults. Stability and convergence of the proposed observers are proved using Lyapunov stability theory, and necessary conditions for the existence of the observers are further discussed. The design of fuzzy learning observers can be formulated in terms of a series of linear matrix inequalities that can be conveniently solved using convex optimisation technique. A single-link flexible manipulator is employed to verify the effectiveness of the proposed fault-reconstructing approaches.  相似文献   

14.
This paper concerns the problems of non-fragile guaranteed cost control (GCC) for nonlinear systems with or without parameter uncertainties. The Takagi–Sugeno (T–S) fuzzy hyperbolic model is employed to represent the nonlinear system. The non-fragile controller is designed by parallel distributed compensation (PDC) method, and some sufficient conditions are formulated via linear matrix inequalities (LMIs) such that the system is asymptotically stable and the cost function satisfies an upper bound in the presence of the additive controller perturbations. The above approach is also extended to the non-fragile GCC of T–S fuzzy hyperbolic system with parameter uncertainties, and the robust non-fragile GCC scheme is obtained. The main advantage of the non-fragile GCC based on the T–S fuzzy hyperbolic model is that it can achieve small control amplitude via ‘soft’ constraint approach. Finally, a numerical example and the Van de Vusse example are given to illustrate the effectiveness and feasibility of the proposed approach.  相似文献   

15.
This paper proposes a method for designing robust H?? static output feedback stabilization of Takagi-Sugeno (T-S) fuzzy systems under actuator saturation. In this paper, the input saturation is represented by a polytopic model and the modeling error is assumed a norm-bounded uncertainty. A set invariance condition for robust H?? static output feedback system under actuator saturation is first established. Then, the estimation of the largest domain of attraction for the system is formulated and solved as a Linear Matrix Inequality (LMI) optimization problem. Two examples are used to demonstrate the effectiveness of the proposed design method.  相似文献   

16.
This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay, Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on Lyapunov- Krasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved, The feasibility is investigated by two illustrative simulation examples.  相似文献   

17.
18.
In this paper, input–output feedback linearization is used to design distributed controls for multi-agent systems with nonlinear and heterogeneous non-identical dynamics. Using feedback linearization, the nonlinear and heterogeneous dynamics of agents are transformed to identical linear dynamics and non-identical internal dynamics. Based on the dependence of agent outputs on agent inputs, feedback linearization may lead to a first-order or high-order tracking synchronization problem. The controller for each agent is designed to be fully distributed such that each agent only requires its own information and the information of its neighbors. The effectiveness of the proposed control protocols are verified by simulation on a microgrid test system.  相似文献   

19.
This article presents absolute stability conditions for a particular class of Takagi–Sugeno fuzzy control systems. Initially, a Takagi–Sugeno fuzzy control system is transformed into a multivariable Lur’e type system. A simple algorithm for checking the absolute stability of this system is then proposed. Since the key of the proposed algorithm is to solve algebraic Riccati equations, software packages such as MATLAB provides a simple means to check the conditions. The proposed approach does not limit the methods of fuzzification and defuzzification. This article presents several analytical examples to verify the simplicity and efficiency of the proposed approach.  相似文献   

20.
For a linear control system with quadratic performance index the optimal control takes a feedback form of all state variables. However, if there are some states which are not fed in the control system, it is impossible to obtain the optimal feedback control by using the usual mathematical optimization technique such as dynamic programming or the maximum principle.

This paper presents the optimal control of output feedback systems for a quadratic performance index by using a new parameter optimization technique.

Since the optimal feedback gains depend on the initial states in the output feedback control system, two cases where (1) the initial states are known, and (2) the statistical properties of initial states such as mean and covariance matrices are known, are considered here. Furthermore, the proposed method for optimal output feedback control is also applied to sampled-data systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号