共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes 总被引:4,自引:0,他引:4
Xianhong Chen Jianfeng Wang Ming Lin Wenbin Zhong Tao Feng Xiaohua Chen Jianghua Chen Feng Xue 《Materials Science and Engineering: A》2008,492(1-2):236-242
The functionalized multi-walled carbon nanotubes (MWNTs) with amino groups were prepared after such steps as oxidation, the addition of carboxyalkyl radicals, acylation and amidation. Besides oxidated-MWNTs/epoxy nanocomposites, amino-functionalized MWNTs/epoxy nanocomposites, in which MWNTs with amino groups acted as a curing agent and covalently attached into the epoxy matrix, were fabricated. Subsequently, the effects of MWNT content on the mechanical and thermal properties for the two systems were investigated. It is found that both the tensile strength and impact strength enhance with the increase of MWNT addition, and the most significant improvement of the tensile strength (+51%) and especially impact strength (+93%) is obtained with amine-treated MWNTs at an 1.5 wt.% content. Moreover, the thermal stability of the nanocomposites also distinctly improves. The improvement of the properties of the amine-treated MWNTs system is more remarkable than those of o-MWNTs system. The reasons for these changes were discussed. 相似文献
2.
Jiawen Xiong Zhen Zheng Wenhui Song Dongsheng Zhou Xinling Wang 《Composites Part A》2008,39(5):904-910
Methylene-bis-ortho-chloroanilline (MOCA), an excellent cross-linker widely used to prepare cured polyurethane (PU) elastomers with high performance, was used to modify a multi-walled carbon nanotube. PU/carbon nanotube (CNT) nanocomposites were prepared by incorporation of the MOCA-grafted CNT into PU matrix. Fourier transform infrared spectra have shown that the modified CNTs have been linked with PU matrix. The microstructure of composites was investigated by Field-Emission Scanning Electron Microscopy. The results of Dynamic Mechanical Thermal Analysis and Differential Scanning Calorimetry have investigated the grafted CNTs as cross-linker in the cured composites. The studies on the thermal and mechanical properties of the composites have indicated that the storage modulus and tensile strength, as well as glass transition temperature and thermal stability are significantly increased with increasing CNT content. 相似文献
3.
A novel approach was successfully developed to fabricate bulk carbon nanotubes (CNTs) reinforced Mg matrix composites. The distribution of CNTs in the composites depends on the solidification rate. When the solidification rate was low, CNTs were pushed ahead of the solidification front and will cluster along grain boundaries. When the solidification rate was high, CNTs were captured by the solidification front, so the CNTs remained inside the grain. Moreover, good interfacial bonding was achieved in the composite under high solidification rate. Meanwhile, compared with the matrix alloy, the ultimate tensile strength (UTS) and yield strength (YS) of the composite were significantly improved. The mechanical properties of the composite under higher solidification rate are better than composite under low solidification rate and the alloy. Moreover, most CNTs on the fracture surfaces were directly pulled out from the matrix. The Kelly–Tyson formula agreed well with the experimental tensile value in the composite under higher solidification rate, and the load-transfer efficiency is almost equal to 1. 相似文献
4.
添加纳米碳管对高密度聚乙烯力学行为和结晶过程的影响 总被引:6,自引:5,他引:6
利用熔融法制备了一系列具有不同纳米碳管含量的纳米碳管(Q盯)/高密度聚乙烯(HDPE)复合材料。对其拉伸性能的研究结果表明,添加质量分数分别为2%,5%和10%的纳米碳管使HDPE的拉伸模量分别提高了7.4%,27.0%和28.6%,屈服强度分别提高了3.3%,14.4%和18.5%,但是会降低HDPE的断裂强度和断裂伸长率。同时,对复合材料中HDPE结晶过程的研究表明,纳米碳管可以提高HDPE的开始结晶温度,降低结晶活化能,但是会使HDPE的结晶速率下降,结晶度降低。 相似文献
5.
Xin Gao Hongyan Yue Erjun Guo Shaolin Zhang Longhui Yao Xuanyu Lin Bao Wang Enhao Guan 《材料科学技术学报》2018,34(10):1925-1931
Graphene reinforced copper matrix composites (Gr/Cu) were fabricated by electrostatic self-assembly and powder metallurgy. The morphology and structure of graphene oxide, graphene oxide-Cu powders and Gr/Cu composites were characterized by scanning electronic microscopy, transmission electronic microscopy, X-ray diffraction and Raman spectroscopy, respectively. The effects of graphene contents, applied loads and sliding speeds on the tribological behavior of the composites were investigated. The results indicate that the coefficient of friction of the composites decreases first and then increases with increasing the graphene content. The lowest friction coefficient is achieved in 0.3?wt% Gr/Cu composite, which decreases by 65% compared to that of pure copper. The coefficient of friction of the composite does not have significant change with increasing the applied load, however, it increases with increasing the sliding speed. The tribological mechanisms of the composite under different conditions were also investigated. 相似文献
6.
Zhiqi Shen Stuart BatemanDong Yang Wu Patrick McMahonMel Dell’Olio Januar Gotama 《Composites Science and Technology》2009
This paper presents a preliminary investigation on the effects of incorporating carbon nanotubes (CNT) into polyamide-6 (PA6) on mechanical, thermal properties and fire performance of woven glass reinforced CNT/PA6 nanocomposite laminates. The samples were characterized by tensile and flexural tests, thermal gravimetric analysis (TGA), heat distortion temperature (HDT) measurements, thermal conductivity and cone calorimeter tests. Incorporation of up to 2 wt% CNT in CNT/PA6/GF laminates improved the flexural stress of the laminates up to 36%, the thermal conductivity by approximately 42% and the ignition time and peak HRR time was delayed by approximately 31% and 118%, respectively. 相似文献
7.
The coefficient of thermal expansion (CTE) of aluminum matrix composite reinforced with 1.0wt.% multi-wall carbon nanotubes (MWNTs) fabricated by cold isostatic pressing and hot squeeze technique was measured between 25 and 400 °C with a high-precision thermomechanical analyzer, and compared with those of pure aluminum and 2024Al matrix fabricated under the same processing. The results show that the CTE of the composite obviously reduces in relation to those of pure aluminum and 2024Al matrix due to the introduction of MWNTs. The addition of 1.0wt.% MWNTs to 2024Al matrix decreases the CTE by as much as 12% and 11% compared with those of pure aluminum and 2024Al matrix at 50 °C, respectively, which indicates that carbon nanotube reinforced metal matrix composite may be a promising materials with low CTE. 相似文献
8.
Mechanical behavior of carbon fiber (CF) reinforced cement-based materials greatly depends on the dispersion of CF and interfacial properties between the CF and cement matrix. In this study, graphene oxide (GO) was utilized to modify the surface properties of CF, including the roughness, wettability and chemical reactivity, and the graphene oxide/carbon fiber (GO/CF) hybrid fibers were fabricated by a newly designed electrophoretic depositing method. The scanning electron microscopy and contact angle measurement results indicated that GO/CF hybrid fibers not only had a rougher surface which was expected to improve the physical friction when CF was pulled out from cement matrix, but also had a higher wettability surface that made it easier to contact with cement hydrates as nucleation sites. In addition, GO/CF hybrid fibers were capable of high chemical reactivity due to the introduction of GO with many functional groups, which ensured them more likely to interact with cement hydrates due to the hydrogen bonding at interface and therefore benefited to strengthen the bonding between the CF and cement matrix. In terms of mechanical behavior, three-point bending test showed that compared with the CF reinforced cement paste, flexural strength of the GO/CF hybrid fibers reinforced cement paste was enhanced by 14.58%, and could be further improved by 10.53% when the GO/CF hybrid fibers were pre-dispersed in the GO solution and then mixed with cement powders. The larger electrostatic repulsion and steric stabilization led to the better dispersion of GO/CF hybrid fibers in GO solution, which were responsible for the further mechanical enhancement of cement paste. In conclusion, the research outcomes provided a novel way for utilizing GO as both of dispersant and surface modifier to improve the dispersion of CF in cement and strengthen its bonding with cement hydrates, consequently achieving a significant enhancement in the mechanical properties of cement paste. 相似文献
9.
通过填加造孔剂方法制备了碳纳米管(CNTs)增强铝基复合泡沫,采用热机械分析仪研究了测试温度、频率、外加振幅、泡沫的孔隙率和CNTs含量对其阻尼性能的影响,并分析了相关阻尼机制。结果表明:复合泡沫铝的阻尼性能随孔隙率和振幅的增大而提高,随着频率的增加而下降。在环境测试温度25~200℃范围内,复合泡沫的损耗因子变化较小;当温度高于200℃后,损耗因子随温度升高有明显的提高。CNTs的加入可以显著提高泡沫铝的阻尼性能,常温下3.0% CNTs增强的铝基复合泡沫的损耗因子达0.27,为泡沫铝的3.71倍。复合泡沫的阻尼机制主要为位错阻尼、晶界阻尼、孔隙阻尼、CNTs的本征阻尼和CNTs-Al间界面阻尼,其中本征和界面阻尼发挥了重要的增强作用。 相似文献
10.
碳纳米管(CNTs)具有极高的力学性能、优异的导电和导热性能,被视为理想的复合材料增强相。CNTs增强复合材料已成为一个极为重要的研究领域。然而,由于CNTs与金属基体间相容性、增强体空间分布难以控制、CNTs本身载流量高而电导率相对较低等,CNTs增强金属基复合材料尚未展现出对金属基体电学性能的显著提升,或者无法有效兼顾电学性能和力学性能,整体研究仍处于起步阶段。鉴于此,从预处理、制备方法和电学机制分析等方面概述了CNTs增强金属基复合材料电学性能的研究现状,并展望了该领域的未来发展趋势。 相似文献
11.
A novel polypropylene (PP) nanocomposite was fabricated by the incorporation of intumescent flame retardant (IFR), carbon nanotubes (CNTs) and graphene into the PP matrix. Results from TEM indicate that IFR, CNTs and exfoliated graphene nanosheets are dispersed finely in the PP matrix, which is supported by the XRD analysis results. Thermogravimetric (TGA) results show that the addition of IFR, CNTs and graphene improved the thermal stability and the char yields of PP. The PP/IFR/CNTs/RGO nanocomposites, filled with 18 wt% IFR, 1 wt% CNTs and 1 wt% graphene, achieve the limiting oxygen index value of 31.4% and UL-94 V0 grade. Cone calorimeter data reveal that combustion behavior, heat release rate peak (PHRR) and average specific extinction area (ASEA) of PP decrease substantially when combination effects of IFR, CNTs and graphene intervene. For the PP/IFR/CNTs/RGO nanocomposites, the PHRR exhibits an 83% reduction and the time of ignition is delayed 40 s compared with neat PP. 相似文献
12.
H.J. ChoiD.H. Bae 《Materials Science and Engineering: A》2011,528(6):2412-2417
Effects of single-walled carbon nanotubes (SWNTs) on strengthening and toughening behaviors of aluminum-based composites with grain sizes ranging from nano- to micrometer have been investigated. The strength of composites is enhanced as an increase in SWNT volume and a decrease in grain size. Nanocrystalline composite containing 3.5 vol.% SWNTs exhibits good ductility of ∼5% tensile elongation to failure as well as superior yield stress of ∼600 MPa. However, the strengthening efficiency of SWNTs becomes half of the theoretical prediction for nanocrystalline composites due to the recovery process around the interface. Nanocrystalline composite containing 2.0 vol.% SWNTs shows the fracture toughness of ∼57 MPa mm1/2, which is five times higher than that of starting aluminum. SWNTs may effectively block the propagation of necks and cracks, providing much improved ductility and toughness. 相似文献
13.
Jan Sumfleth Kirsten PrehnMalte H.G. Wichmann Sebastian WedekindKarl Schulte 《Composites Science and Technology》2010
In this study, three different types of multi-wall carbon nanotubes (MWCNTs) were compared as nanostructured reinforcements in epoxy polymers: commercially available CVD-MWCNTs, synthesised in an industrial process, aligned-CVD-MWCNTs and arc-grown MWCNTs, both obtained from a lab-scale processes. The nanocomposite properties were characterised by means of electron microscopy, rheological, electrical and mechanical methods. Industrial CVD-MWCNTs are favourable for the implication of an electrical conductivity in the epoxy due to their high tendency to form conducting networks. The less entangled structure of aligned-CVD-MWCNTs turns out to be favourable for an easy dispersion and low viscosity in epoxy at similar conductivities compared to the CVD-MWCNTs. Additionally, they provide the highest increase in fracture toughness (∼17%). Arc-grown MWCNTs do not offer any electrical conductivity in epoxy without sufficient purification methods. Their high level of impurities and short length further complicate the transfer of their good electrical and mechanical properties into the nanocomposite. 相似文献
14.
Joanna LipeckaMariusz Andrzejczuk Ma?gorzata Lewandowska Jolanta Janczak-RuschKrzysztof J. Kurzyd?owski 《Composites Science and Technology》2011,71(16):1881-1885
The effect of carbon nanotubes on the thermal stability of ultrafine grained aluminium alloy processed by the consolidation of nano-powders obtained by mechanical alloying was evaluated via measurements of grain size and mechanical property changes upon annealing at various temperatures. It was found that the grain size of the samples containing carbon nanotubes is stable up to high temperatures and even after annealing at 450 °C (0.7Tm) no evident grain growth was observed. The limited grain boundary migration was attributed to the presence of entangled networks of carbon nanotubes located at grain boundaries and to the formation of nanoscale particles of aluminium carbide Al4C3. It was also revealed that carbon nanotubes decompose at a relatively low temperature of 450 °C and form fine Al4C3 precipitates. This transformation does not significantly affect the mechanical properties due to the nanoscale size of the carbides. 相似文献
15.
With a continuous improvement of the production techniques for carbon nanofibers and carbon nanotubes along with an improvement of the available qualities of the materials, these reinforcements have been introduced into polymers, ceramics and metals. While in the field of polymers first success stories have been published on carbon nanofiller reinforcements, up to now metals containing these types of nanofillers are still a topic of intensive research. Basically a similar situation were found in those days, when micron sized carbon fibers came on the market. Today many applications of carbon fiber reinforced composites are existing, while metals reinforced with conventional carbon fibers are still only found in niche applications. 相似文献
16.
Graphene and multi-walled carbon nanotubes have attracted interest for a number of potential applications. One of the most actively pursued applications uses graphene and carbon nanotubes as a transparent conducting electrode in solar cells, displays or touch screens. In this work, in situ reduced graphene oxide/Poly (vinyl alcohol) and multi-walled carbon nanotubes/Sodium Dodecyl Sulfate/Poly (vinyl alcohol) composites were prepared by water dispersion and different reduction treatments. Comparative studies were conducted to explore the electrical and optical properties of nanocomposites based on graphene and multi-walled carbon nanotubes. A thermal reduction of graphene oxide was more effective, producing films with sheet resistances as low as 102–103 Ω/square with 80% transmittance for 550 nm light. The percolation threshold of the thermally reduced graphene oxide composites (0.35 vol%) was much lower than that of the chemically reduced graphene oxide composites (0.57 vol%), and than that of the carbon nanotubes composites (0.47 vol%). The Seebeck coefficient of graphene oxide films changes from about 40 μV/K to −30 μV/K after an annealing of three hours at 200 °C. The optical absorption of the nanocomposites showed a high absorbance in near UV regions and the photoluminescence enhancement was achieved at 1 wt% graphene loading, while the carbon nanotubes based composite presents a significant emission at 0.7 wt% followed with a photoluminescence quenching at higher fraction of the nanofillers 1.6 wt% TRGO and 1 wt% MWCNTs. 相似文献
17.
Nathalie González-Vidal Antxon Martínez de Ilarduya Sebastián Muñoz-Guerra Pere Castell María Teresa Martínez 《Composites Science and Technology》2010
Poly(hexamethylene terephthalate) (PHT)/carbon nanotubes (CNT) nanocomposites containing 1% and 3% (w/w) of filler were prepared by two procedures: in situ ring-opening polymerization of hexamethylene terephthalate cyclic oligomers in the presence of CNT and melt blending of PHT/CNT mixtures. Arc discharge multiwalled carbon nanotubes, both pristine (MWCNT) and hydroxyl functionalized (MWCNT-OH), were used. The objective was to evaluate the effect of preparation procedure, nanotube side-wall functionalization and amount of nanotube loaded on properties of PHT. All nanocomposites showed an efficient distribution of the carbon nanotubes within the PHT matrix but interfacial adhesion and reinforcement effect was dependent on both functionalization and nanotubes loading. Significant differences in thermal stability and mechanical properties ascribable to functionalization and processing were observed among the prepared nanocomposites. All the prepared nanocomposites showed enhanced crystallizability due to CNT nucleating effects although changes in melting and glass transition temperatures were not significant. 相似文献
18.
Xianhong Chen Xiaoli WuJiagui Zou Jilin LiuJianghua Chen 《Materials Science and Engineering: B》2011,176(5):425-430
A novel liquid crystal functionalized multi-walled carbon nanotubes (LC-MWNTs)/2-methyl-N,N′-bis(4′-methoxy benzoyloxy)-terephthalamide liquid crystal (LC) nanocomposite (LC-MWNTs/LC) was prepared via solution blend. The dispersion and thermal property of the nanocomposites with different loadings of LC-MWNTs (0.1-1 wt.%) were investigated using SEM, TGA and DSC. The results show that the dispersion of LC-MWNTs in LC matrix is more homogeneous than purified MWNTs. The decomposition temperature of nanocomposites exhibits obvious decrease at first and then increase with increasing concentration of LC-MWNTs, which is lower than that of LC for 0.1-0.4 wt.% LC-MWNT loadings and higher than that of LC for 0.5-1 wt.% LC-MWNT loadings. The addition of LC-MWNTs has little effects on the texture of smectic mesophase. These results illustrate the LC-MWNTs/LC nanocomposites, which have lower melting point and higher decomposition temperature than those of LC by adding adequate amount of LC-MWNTs, show a wide temperature range of mesophase and high thermostability. The increased mesophase temperature region of LC materials will be beneficial to their practical applications. 相似文献
19.
Hiroyuki Fukuda Katsuyoshi KondohJunko Umeda Bunshi Fugetsu 《Composites Science and Technology》2011,71(5):705-709
Magnesium containing 6 wt.% aluminum alloy composites reinforced with carbon nanotubes were fabricated with powder metallurgy based wet-processing. Yield stress and tensile strength were successfully improved by the addition of carbon nanotubes. Field emission-transmission electron microscopy microstructural analysis clarified that needle-like ternary carbides of Al2MgC2 were synthesized at some interfaces between magnesium matrix and carbon nanotubes, and the other interfaces were clean without any other materials or defects. Tensile loading transfer from magnesium matrix to carbon nanotubes was effectively strengthened by both the production of Al2MgC2 compounds and the clean interface between magnesium matrix and carbon nanotubes. 相似文献
20.
Optical properties are reported for composites based on single-walled carbon nanotubes (SWNTs) and copolymer poly(3,4-ethylenedioxythiophene-co-pyrene) (PEDOT-Py) prepared by chemical polymerization of two monomers in the presence of carbon nanotubes. A charge transfer between SWNTs and the PEDOT-Py copolymer was demonstrated by Raman scattering. The increase in the relative intensity of the Raman lines peaked at 440–577 cm−1, which were assigned to the ethylenedioxy ring vibrational modes, indicated a significant hindrance steric in the case of the composites based on the PEDOT-Py copolymer and metallic SWNTs. The increase in the absorbance of IR band peaked at 984 cm−1 occurred simultaneously with the disappearance of the IR band at 1639 cm−1. This finding was a consequence of the formation of new covalent bonds between SWNTs and the thiophene and benzene rings of the repeating units of the PEDOT-Py copolymer. The photoluminescence (PL) quenching process of the PEDOT-Py copolymer was induced by semiconducting SWNTs. The PL quenching of PEDOT-Py copolymer in the presence of SWNTs was demonstrated based on the energy level diagrams of the two constituents of the PEDOT-Py/SWNTs composite material. 相似文献