首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The surface of an indium–tin oxide (ITO) electrode was coated with layer-by-layer (LbL) thin films composed of fluorescein-modified poly(allylamine) (F-PAH) and poly(styrenesulfonic acid) (PSS) and their UV–visible absorption spectra were recorded under the influence of electrode potential. The LbL films were prepared by an alternate deposition of F-PAH and PSS on the surface of ITO electrode through an electrostatic force of attraction. The intensity of the absorption band around 500 nm originating from fluorescein residues in the LbL film depended on the pH of the solution in which the LbL film is immersed. The intensity of the absorption band decreased when the electrode potential higher than + 1.2 V was applied, while virtually no response was observed at lower electrode potential. The spectral change was suppressed in solutions with higher buffer capacity. The results were discussed in terms of the changes in local pH in the vicinity of the electrode surface, which in turn was induced by electrolysis of H2O on the electrode surface.  相似文献   

2.
We report a new method for selective detection of d(+)-glucose using a copper nanoparticles (Cu-NPs) attached zinc oxide (ZnO) film coated electrode. The ZnO and Cu-NPs were electrochemically deposited onto indium tin oxide (ITO) coated glass electrode and glassy carbon electrode (GCE) by layer-by-layer. In result, Cu-NPs/ZnO composite film topography was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. SEM and AFM confirmed the presence of nanometer sized Cu-NPs/ZnO composite particles on the electrode surface. In addition, X-ray diffraction pattern revealed that Cu-NPs and ZnO films were attached onto the electrode surface. Indeed, the Cu-NPs/ZnO composite modified electrode showed excellent electrocatalytic activity for glucose oxidation in alkaline (0.1 M NaOH) solution. Further, we utilized the Cu-NPs/ZnO composite modified electrode as an electrochemical sensor for detection of glucose. This glucose sensor showed a linear relationship in the range from 1 × 10? 6 M to 1.53 × 10? 3 M and the detection limit (S/N = 3) was found to be 2 × 10? 7 M. The Cu-NPs/ZnO composite as a non-enzymatic glucose sensor presents a number of attractive features such as high sensitivity, stability, reproducibility, selectivity and fast response. The applicability of the proposed method to the determination of glucose in human urine samples was demonstrated with satisfactory results.  相似文献   

3.
Ultrafine composite fibers made from poly(vinyl alcohol) (PVA)/tin glycolate — a moisture-stable tin oxide containing compound — were prepared by a combined sol–gel processing and electrospinning technique. These fibers were subsequently converted to ultrafine tin oxide fibers by calcination treatment, with the aim of producing tin oxide fiber with a high surface area-to-mass ratio and a high specific conductivity value. The acidity of spinning solution plays an important role to the morphology and size of the obtained fibers. The average diameters of the obtained composite fibers were in the range of 87–166 nm. It was found that the ultrafine tin oxide fiber showed the high conductivity value of 1.59 × 103 S cm?1 at calcinations temperature of 600 °C, and the BET surface area was in a range of 71 and 275 m2 g?1. Moreover, the effect of calcinations temperature on the phase and the size of the tin oxide fibers were investigated in this study.  相似文献   

4.
In the present study, Potamogeton crispus L. plants exposed to various concentrations of silver (Ag) (5, 10, 15, and 20 μM) for 5 d were investigated to determine the accumulating potential of Ag and its influence on nutrient elements, chlorophyll pigments and fluorescence, various antioxidant enzymes and compounds, adenosine triphosphate (ATP), protein content and ultrastructure. The accumulation of Ag was found to increase in a concentration dependent manner with a maximum of 29.3 μg g?1 at 20 μM. The nutrient elements (except Ca), photosynthetic pigments, chlorophyll a fluorescence parameters (Fo, Fv, Fv/Fm, Fv/Fo), malondialdehyde (MDA), ATP, peroxidase (POD) activity, ascorbate (AsA), reduced glutathione (GSH) and protein contents decreased significantly as concentration of Ag augmented. In contrast, an induction in SOD activity was recorded, while an initial rise in Ca content and CAT activity was followed by subsequent decline. Morphological symptoms of senescence phenomena such as chlorosis and damage of chloroplasts and mitochondria were observed even at the lowest concentration of Ag, which suggested that Ag hastened the senescence of the tested plants. The loss of nutrients and chlorophyll content and damage of chloroplasts were associated with disturbances in photosynthetic capacity as indicated by the quenching of chlorophyll a fluorescence. Decreased chlorophyll and protein contents suggest oxidative stress induced by Ag. In addition, both the reduction of ATP and the damage to the ultrastructure of organelles were indicative of general disarray in the cellular functions exerted by Ag.  相似文献   

5.
In the present study, the synthesis of Tin doped indium oxide (ITO) nanopowder at different compositions (In/Sn = 0, 5, 10, 15 at %) was carried out by co-precipitation method. The decomposition of precipitated indium tin acetylacetonate precursor to form In2O3–SnO2 (Sn1?xInxO2) at 400 °C was confirmed by the thermal and FTIR studies. The changes in strain and grain size of the synthesized particle with respect to dopant concentration were determined from the X-ray diffraction (XRD) analysis. Transmission electron microscopy (TEM) images support to confirm the grain size. The optical properties on ITO nanoparticles were analyzed with UV–visible spectroscopy, and band gap was found to vary from 3.62 to 3.89 eV with Sn dopant concentration. This variation was ascribed to the quantum confinement effect.  相似文献   

6.
Inorganic-solid-state electrolyte tantalum oxide thin films were deposited by reactive DC magnetron sputtering to improve the leakage and deterioration of traditional liquid electrolytes in electrochromic devices. O2 at 1–20 sccm flow rates was used to deposit the tantalum oxide films with various compositions and microstructures. The results indicate that the tantalum oxide thin films were amorphous, near-stoichiometric, porous with a loose fibrous structure, and highly transparent. The maximum charge capacity was obtained at an oxygen flow rate of 3 sccm and 50 W. The transmission change of the Ta2O5 film deposited on a WO3/ITO/glass substrate between colored and bleached states at a wavelength of 550 nm was 56.7%. The all-solid-state electrochromic device was fabricated as a multilayer structure of glass/ITO/WO3/Ta2O5/NiOx/ITO/glass. The optical transmittance difference of the device increased with increasing applied voltage. The maximum change was 66.5% at an applied voltage of ± 5 V.  相似文献   

7.
Nanostructured zinc oxide (nsZnO) films have been fabricated onto conducting indium–tin–oxide (ITO) coated glass plate, by cathodic electro-deposition to immobilize probe DNA specific to M. tuberculosis via physisorption based on strong electrostatic interactions between positively charged ZnO (isoelectric point = 9.5) and negatively charged DNA to detect its complementary target. Electrochemical studies reveal that the presence of nano-structured ZnO results in increased electro-active surface area for loading of DNA molecules. The DNA–nsZnO/ITO bioelectrode exhibits interesting characteristics such as detection range of 1 × 10?6 ? 1 × 10?12 M, detection limit of 1 × 10?12 M (complementary target) and 1 × 10?13 M (genomic DNA), reusability of about 10 times, response time of 60s and stability of up to 4 months when kept at 4°C.  相似文献   

8.
The sensing properties of the planar mixed-potential CO sensor coupling scandia-stabilized zirconia (ScsZ) as electrolyte and tin-doped indium oxide (ITO) as sensing electrode to different CO concentrations from ~100 ppm to ~500 ppm have been investigated. The monodispersed ITO particles with spherical shape have been obtained by hydrothermally treating the mixture of the coprecipitated gels with urea as an additive. Directly using urea as the mineralizer, the two coexisting morphologies such as rod-like and spherical shapes have been obtained. The sensor coupling spherical 5 at.% tin-doped indium oxide (5ITO) electrode shows better sensitivity than the sensors coupling both spherical 8 at.% tin-doped indium oxide (S8ITO) and 8 at.% tin-doped indium oxide (RS8ITO) containing rod-like particles. The sensor coupling spherical 5 at.% tin-doped indium oxide (5ITO) electrode also exhibits highly reproducible and stable signals to different CO concentrations.  相似文献   

9.
A carboxylic group functioned charge transporting was synthesized and self-assembled on an indium tin oxide (ITO) anode. A typical electroluminescent device [modified ITO/TPD (50 nm)/Alq3 (60 nm)/LiF (2 nm)/(120 nm)] was fabricated to investigate the effect of the amino groups-small molecules interface on the characteristics of the device. The increase in the surface work function of ITO is expected to facilitate the hole injection from the ITO anode to the Hole Transport Layer (HTL) in electroluminescence. The modified electroluminescent device could endure a higher current and showed a much higher luminance than the nonmodified one. For the produced electroluminescent devices, the I-V characteristics, optical characterization and quantum yields were performed. The external quantum efficiency of the modified electroluminescent device is improved as the result of the presence of the amino groups-small molecules interface.  相似文献   

10.
Indium tin oxide (ITO) thin films were deposited on glass substrates by RF sputtering system at different sputtering pressure (SP) (20–34 mTorr) and room temperature. The sputtering pressure effects on the deposition rate, electro-optical and structural properties of the as-deposited films were systematically investigated. The optimum sputtering pressure of 27 mTorr, giving a good compromise between electrical conductivity and optical transmittance was found to deposit films. The films were heat-treated in vacuum (200–450 °C) and their electro-optical and structural properties investigated with temperature. A criterion factor Q, which is the ratio between the normalized average transmission to normalized resistivity was defined. It has been observed that Q has its maximum value for heat treatment at 400 °C and the X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis proves the films have preferred crystal growth towards (2 2 2) direction and average size of grains are 35–40 nm.  相似文献   

11.
《Materials Letters》2007,61(19-20):4043-4045
The urea-based hydrothermal (UBH) method can synthesize indium tin oxide (ITO) nanopowders with good monodispersity and size uniformity. However, the resulting formation of high pressure CO2 gas by the hydrolysis of urea during the hydrothermal process is unsafe. The pressure generated by the UBH method can be lowered by connecting the hydrothermal reactor to a vessel containing sodium hydroxide solution to quickly absorb CO2 gas. ITO nanoparticles with particle sizes of 90 ± 3 nm and 40 ± 3 nm can be produced. The size of the as-prepared nanoparticles is readily controlled by adjusting the precursor concentration. Using properly mixed nanoparticles with a volume ratio of V40 nm:V90 nm = 30:70 as the raw materials, ITO can be sintered to a high and consistent density of 99.3–99.5% of the theoretical density.  相似文献   

12.
Zinc oxide nanofibers doped with aluminum oxide were prepared by sol–gel processing and electrospinning techniques using polyvinylpyrrolidone (PVP), zinc acetate and aluminum acetate as precursors. The resulting nanofibers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–Vis spectroscopy, and current–voltage (IV) properties. The nanofibers had diameters in the range of 60–150 nm. The incorporation of aluminum oxide resulted in a decrease in the crystallite sizes of the zinc oxide nanofibers. Aluminum oxide doped zinc oxide (AOZO) nanofibers exhibited lower bandgap energies compared to undoped zinc oxide nanofibers. However, as the aluminum content (Al/(Al + Zn) × 100%) was increased from 1.70 at.% to 3.20 at.% in the electrospinning solution, the bandgap energy increased resulting in lower conductivity. The electrical conductivity of the AOZO samples was found to depend on the amount of aluminum dopant in the matrix as reflected in the changes in oxidation state elucidated from XPS data. Electrospinning was found to be a productive, simple, and easy method for tuning the bandgap energy and conductivity of zinc oxide semiconducting nanofibers.  相似文献   

13.
In this paper, the low temperature electrical conductivity and microwave absorption properties of carbon coated iron nanoparticles–polyvinyl chloride composite films are investigated for different filler fractions. The filler particles are prepared by the pyrolysis of ferrocene at 980 °C and embedded in polyvinyl chloride matrix. The high resolution transmission electron micrographs of the filler material have shown a 5 nm thin layer graphitic carbon covering over iron particles. The room temperature electrical conductivity of the composite film changes by 10 orders of magnitude with the increase of filler concentration. A percolation threshold of 2.2 and an electromagnetic interference shielding efficiency (EMI SE) of ~18.6 dB in 26.5–40 GHz range are observed for 50 wt% loading. The charge transport follows three dimensional variable range hopping conduction.  相似文献   

14.
Aluminum oxide and aluminum nitride with different sizes were used alone or in combination to prepare thermally conductive polymer composites. The composites were categorized into two systems, one including composites filled with large-sized aluminum nitride and small-sized aluminum oxide particles, and the other including composites filled with large-sized aluminum oxide and small-sized aluminum nitride. The use of these hybrid fillers was found to be effective for increasing the thermal conductivity of the composite, which was probably due to the enhanced connectivity offered by the structuring filler. At a total filler content of 58.4 vol.%, the maximum values of both thermal conductivities in the two systems were 3.402 W/mK and 2.842 W/mK, respectively, when the volume ratio of large particles to small particles was 7:3. This result was represented when the composite was filled with the maximum packing density and the minimum surface area at the same volume content. As such, the proposed thermal model predicted thermal conductivity in good agreement with experimental values.  相似文献   

15.
In order to improve the electrochemical performance of the LaBaCuCoO5+δ (LBCC) electrode, LaBaCuCoO5+δ–Ce0.8Sm0.2O1.9 (LBCC–SDC) are prepared and characterized for potential application as a cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs) based on an SDC electrolyte. Electrical conductivity, thermal expansion and electrochemical properties are investigated by four probing DC technique, dilatometry, AC impedance and polarization techniques, respectively. It is found that the thermal expansion coefficient (TEC) and electrical conductivity decrease with the increase of SDC content in LBCC–SDC composites. AC impedance spectra based on SDC electrolyte measured at intermediate temperatures show that the addition of SDC to LBCC improves the electrochemical performance of a LBCC cathode, and that a LBCC–SDC20 cathode exhibits superior electrochemical performance in the LBCC–SDCx composite cathodes. Moreover, even when the content of SDC is up to 40 wt%, the area specific resistance of the LBCC–SDC40 composite cathode on SDC electrolyte is lower than the corresponding interfacial resistance for pure LBCC at 650–800 °C. The power density of the Ni–SDC/SDC/LBCC–SDC20 cell is 615 mW cm?2 at 800 °C. These results indicate that LBCC–SDCx is a potential cathode material for application in IT-SOFCs.  相似文献   

16.
A novel potentiometric urea biosensor has been fabricated with urease (Urs) immobilized multi-walled carbon nanotubes (MWCNTs) embedded in silica matrix deposited on the surface of indium tin oxide (ITO) coated glass plate. The enzyme Urs was covalently linked with the exposed free –COOH groups of functionalized MWCNTs (F-MWCNTs), which are subsequently incorporated within the silica matrix by sol–gel method. The Urs/MWCNTs/SiO2/ITO composite modified electrode was characterized by Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA) and UV–visible spectroscopy. The morphologies and electrochemical performance of the modified Urs/MWCNTs/SiO2/ITO electrode have been investigated by scanning electron microscopy (SEM) and potentiometric method, respectively. The synergistic effect of silica matrix, F-MWCNTs and biocompatibility of Urs/MWCNTs/SiO2 made the biosensor to have the excellent electro catalytic activity and high stability. The resulting biosensor exhibits a good response performance to urea detection with a wide linear range from 2.18 × 10? 5 to 1.07 × 10? 3 M urea. The biosensor shows a short response time of 10–25 s and a high sensitivity of 23 mV/decade/cm2.  相似文献   

17.
Polyimide/reduced graphene oxide (PI/r-GO) core–shell structured microspheres were fabricated by in-situ reduction of graphene oxide (GO), which was coated on the surface of PI microspheres via hydrogen bonding and π–π stacking interaction. The highly ordered 3D core–shell structure of PI/r-GO microspheres with graphene shell thickness of 3 nm was well characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM) and Raman spectra. The glass transition temperature (Tg) of PI/r-GO microspheres was slightly increased because of the interaction of r-GO and PI matrix while the temperature at 5% weight loss (T5%) of PI/r-GO microspheres was decreased due to the side effect of reductant hydrazine hydrate. The PI/r-GO nanocomposites exhibited highly electrical conductivity with percolation threshold of 0.15 vol% and ultimate conductivity of 1.4 × 10−2 S/m. Besides, the thermal conductivity of PI/r-GO nanocomposites with 2% weight content of r-GO could reach up to 0.26 W/m K.  相似文献   

18.
The aim of the study was to fabricate a biodegradable bio-composite using only natural biological precursors for both composite components, i.e., for a support and for a filler. Bio-composites of biomorphous structure were prepared using monolithic blocks of yucca (Yucca flaccida) carbonised at 550 °C as a stiff porous skeleton, and chitosan as a filler that coated the internal surface of the skeleton by a thin film. Highly porous supports and the resultant biomorphous composites were characterized by means of TGA, SEM, low-temperature physical adsorption of nitrogen, as well as electric and ultrasonic measurements. The resultant bio-composites were found to be very light materials with density of about 0.13 g/cm3 and very porous (over 90%). They were found to be hierarchically ordered anisotropic structures with a stiff skeleton of dynamic elastic moduli up to 0.8 GPa. The specific surface area was found to be 72 m2/g giving a surface area of chitosan film equal to about 12 m2 for a block sample of a volume of 2 cm3. Covering porous support by thin film of chitosan resulted in the increase of electrical conductivity of the resultant composite.  相似文献   

19.
This paper is an attempt to introduce a suitable composite to be used in the bipolar plate of proton exchange membrane fuel cell (PEMFC). At first the effect of the mold pressing pressure and graphite content on the through-plane and in-plane electrical conductivities, flexural strength, hardness, density, porosity and water absorption of phenolic resin/graphite composite was investigated. The two mold pressing pressures, 15 and 740 bar were applied in 20, 30, 40, 50, 60, 70 and 80 wt.% graphite contents. The characterization was also conducted by an optical microscope, a stereoscope and the scanning electron microscopy. The results showed that the pressure considerably affects all properties and can dramatically change the porosity percentage of the composite. To improve conductivity and strength, the composite composition was modified by the nanosheet expanded graphite and carbon fiber. In an optimum composition, the in-plane and through-plane electrical conductivity and flexural strength reached 1518, 76 S/cm and 84 MPa, respectively. In this study, the contact resistance between the bipolar plate and carbon paper (as a gas diffusion layer) was also determined by changing the clamping pressure.  相似文献   

20.
Polyacrylate composites with various fillers such as multi-walled carbon nanotube (CNT), aluminum flake (Al-flake), aluminum powders and Al–CNT were prepared by a ball milling. The thermal decomposition temperature increased by as much as 64 °C for polyacrylate/Al-flake 70 wt% composite compared to polyacrylate. The thermal conductivity of polyacrylate/Al–CNT composites increased from 0.50 to 1.67 W/m K as the Al–CNT content increases from 50 to 80 wt%. The thermal conductivity of the composite sheet increases with the sheet thickness. At the given filler concentration (90 wt%), the composite filled with aluminum powder of 13 μm has a higher thermal conductivity than the one filled 3 μm powder, and the composite filled with mixture of two powders showed a synergistic effect on the thermal conductivity. The morphology indicates that the dispersion of CNT in the polyacrylate/Al-flake + CNT composite is not perfect, and agglomeration of CNTs was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号