共查询到20条相似文献,搜索用时 15 毫秒
1.
Mohsen Keyvanfard Razieh Shakeri Hassan Karimi-Maleh Khadijeh Alizad 《Materials science & engineering. C, Materials for biological applications》2013,33(2):811-816
A carbon-paste electrode modified with multiwall carbon nanotubes (MWCNTs) was used for the sensitive and selective voltammetric determination of ascorbic acid (AA) in the presence of 3,4-dihydroxycinnamic acid (3,4-DHCA) as mediator. The mediated oxidation of AA at the modified electrode was investigated by cyclic voltammetry (CV), chronoamperommetry and electrochemical impedance spectroscopy (EIS). Also, the values of catalytic rate constant (k), and diffusion coefficient (D) for AA were calculated. Using square wave voltammetry (SWV), a highly selective and simultaneous determination of AA, acetaminophen (AC) and tryptophan (Trp) has been explored at the modified electrode. The modified electrode displayed strong function for resolving the overlapping voltammetric responses of AA, AC and Trp into three well-defined voltammetric peaks. In the mixture containing AA, AC and Trp, the three compounds can well separate from each other with potential differences of 200, 330 and 530 mV between AA and AC, AC and Trp and AA and Trp, respectively, which was large enough to determine AA, AC and Trp individually and simultaneously. 相似文献
2.
Sadegh Salmanpour Toktam Tavana Ali Pahlavan Mohammad A. Khalilzadeh Ali A. Ensafi Hassan Karimi-Maleh Hadi Beitollahi Elaheh Kowsari Daryoush Zareyee 《Materials science & engineering. C, Materials for biological applications》2012,32(7):1912-1918
A novel multiwall carbon nanotubes (MWCNTs) modified carbon ionic liquid electrode (CILE) was fabricated and used to investigate the electrochemical behavior of norepinephrine (NP). MWCNTs/CILE was prepared by mixing hydrophilic ionic liquid, 1-methyl-3-butylimidazolium bromide (MBIDZBr), with graphite powder, MWCNTs, and liquid paraffin. The fabricated MWCNTs/CILE showed great electrocatalytic ability to the oxidation of NE. The electron transfer coefficient, diffusion coefficient, and charge transfer resistant (Rct) of NE at the modified electrode were calculated. Differential pulse voltammetry of NE at the modified electrode exhibited two linear dynamic ranges with slopes of 0.0841 and 0.0231 μA/μM in the concentration ranges of 0.3 to 30.0 μM and 30.0 to 450.0 μM, respectively. The detection limit (3σ) of 0.09 μM NP was achieved. This modified electrode exhibited a good ability for well separated oxidation peaks of NE and acetaminophen (AC) in a buffer solution, pH 7.0. The proposed sensor was successfully applied for the determination of NE in human urine, pharmaceutical, and serum samples. 相似文献
3.
Majid Arvand Reza Ansari Lida Heydari 《Materials science & engineering. C, Materials for biological applications》2011,31(8):1819-1825
The use of a carbon-nanotube paste electrode provides an effective means for the determination of sulfamethoxazole. A decrease of ca. 110 mV in the overpotential for the oxidation of sulfamethoxazole compared to a traditional carbon paste electrode is reported along with greatly enhanced signal-to-noise characteristics. The oxidation process was found to be dependent on the pH of the supporting electrolyte. Under the optimized conditions the calibration plots are linear in the concentration range of 0.35–30 μg mL? 1 with slope of 0.0955 μA/μg mL? 1, LOD 0.1 μg mL? 1 and LOQ 0.33 μg mL? 1. Application of the method for the determination of the drug in the form tablet or suspension, without any interference, from the excipients, resulted in acceptable deviation from the stated concentrations. 相似文献
4.
Hadi Beitollahi Mohammad Ali Taher Fatemeh Mirrahimi Rahman Hosseinzadeh 《Materials science & engineering. C, Materials for biological applications》2013,33(3):1078-1084
In the present paper, a novel benzoylferrocene (BF) modified carbon nanotube paste electrode (BFCNPE) was prepared. The modified electrode was further used for the successful determination of N-acetylcysteine (NAC), and it showed an excellent electrocatalytic oxidation activity toward NAC with a lower overvoltage, pronounced current response, and good sensitivity. Under the optimized experimental conditions, the proposed electrochemical NAC sensor exhibited a linear calibration plot that ranged from 3.0 × 10? 7 to 7.0 × 10? 4 M with a detection limit of 9.0 × 10? 8 M. Also, Square wave voltammetry (SWV) was used for simultaneous determination of NAC and folic acid (FA) at the modified electrode. Finally, the proposed method was applied to the determination of NAC in NAC tablets. 相似文献
5.
Tony Thomas Ronald J. Mascarenhas Praveen Martis Zineb Mekhalif B.E. Kumara Swamy 《Materials science & engineering. C, Materials for biological applications》2013,33(6):3294-3302
A biocompatible electrochemical sensor for selective detection of epinephrine (EP) in the presence of 1000-fold excess of ascorbic acid (AA) and uric acid (UA) was fabricated by modifying the carbon paste electrode (CPE) with multi-walled carbon nanotubes (MWCNTs) using a casting method. The electro-catalytic activity of the modified electrode for the oxidation of EP was investigated. The current sensitivity of EP was enhanced to about five times upon modification. A very minimum amount of modifier was used for modification. The voltammetric response of EP was well resolved from the responses of AA and UA. The electrochemical impedance spectroscopic (EIS) studies reveal the least charge transfer resistance for the modified electrode. The AA peak that is completely resolved from that of EP at higher concentrations of AA and the inability of the sensor to give an electrochemical response for AA below a concentration of 3.0 × 10? 4 M makes it a unique electrochemical sensor for the detection of EP which is 100% free from the interference of AA. Two linear dynamic ranges of 1.0 × 10? 4–1.0 × 10? 5 and 1.0 × 10? 5–5.0 × 10? 7 M with a detection limit of 2.9 × 10? 8 M were observed for EP at modified electrode. The practical utility of this modified electrode was demonstrated by detecting EP in spiked human blood serum and EP injection. The modified electrode is highly reproducible and stable with anti fouling effects. 相似文献
6.
7.
《Journal of Experimental Nanoscience》2013,8(7-8):947-956
The anodic oxidation of sulphadiazine (SD) was investigated at a glassy carbon electrode modified by multi-walled carbon nanotube (MWCNT–GCE), using cyclic voltammetry and chronoamperometry. The results indicate that MWCNT-modified GCEs show an efficient and selective electrocatalytic activity towards the anodic oxidation of SD among biologically important compounds in buffered solutions at pH?=?7. It was found that oxidation of SD at the surface of MWCNT–GCE occurs at a potential less positive than that of unmodified GCE (about 100?mV). The diffusion coefficient of SD was also estimated using chronoamperometry. The kinetic parameters such as the electron transfer coefficient between SD and modified electrode, α, and the charge transfer rate constant, ks , for oxidation of SD at the MWCNT–GCE surface were determined according to the Laviron procedure. The dissociation constants of oxidised and reduced acid–base species of SD can be obtained from the E 1/2 versus pH curves. The linear dependence of the peak current on the concentration was observed in the range 10–2000?µmol?L?1 with a detection limit of 7.1?µmol?L?1. The method was also applied to determinate the SD in human blood plasma and urine samples. 相似文献
8.
A single-wall carbon nanotubes (SWNT)-film coated glassy carbon electrode (GCE) was described for the determination of tryptophan. In pH 2.5 Na2HPO4-citric acid buffer, tryptophan yields a well-defined and very sensitive oxidation peak at about 1.08 V at the SWNT-film coated GCE. The oxidation peak current increases greatly and the peak potential shifts toward more negative direction at the SWNT-modified GCE in contrast to that at the bare GCE. Under optimized conditions, the oxidation peak current is proportional to the concentration of tryptophan over the range from 4 x 10(-8) to 1 x 10(-5) mol/L. The detection limit is 1 x 10(-8) mol/L at 3 min of accumulation. Using the proposed method, tryptophan in the human's blood serum samples was determined. 相似文献
9.
A novel electrochemical genesensor using twice hybridization enhancement of gold nanoparticles based on carbon paste modified electrode is described. The carbon nanotube modified carbon paste electrode (CNTPE) and mesoporous molecular sieve SBA-15 modified carbon paste electrode (MSCPE) were investigated. The assay relies on the immobilization of streptavidin-biotin labeled target oligonucleotides onto the electrode surface and its hybridization to the gold nanoparticle-labeled DNA probe. After twice hybridization enhanced connection of gold nanoparticles to the hybridized system, the differential pulse voltammetry (DPV) signal of total gold nanoparticles was monitored. It was found that the adsorption of oligonucleotide and hybridized DPV signal on CNTPE were both enhanced in comparison with that of pure carbon paste electrode (CPE). But this trend was reverse on MSCPE. The DPV detection of twice hybridized gold nanoparticles indicated that the sensitivity of the genesensor enhanced about one order of magnitude compared with one-layer hybridization. One-base mismatched DNA and complementary DNA could be distinguished clearly. However, no distinct advantage of MSCPE over CPE was found. 相似文献
10.
ABSTRACTA new sensor for the determination of nicotine is proposed based on the reduction of Cu(II)–nicotine complex at MWCNT modified carbon paste electrode. In borate buffer (pH 7.0) the reduction peak of Cu(II)–nicotine complex was observed at ? 0.05 V (versus Ag/AgCl). The increment of peak current obtained by deducting the reduction peak current of the Cu(II)–nicotine complex was rectilinear with nicotine concentration in the range of 0.05–30.0 n g mL?1, with a detection limit of 0.01 ng/mL?1. The method was applied for the sensitive quantification of nicotine in real samples with the satisfactory results. 相似文献
11.
A novel chemically modified electrode has been prepared on the basis of the attachment of multi-wall carbon nanotubes (MWNT) onto the surface of a glassy carbon electrode (GCE) in the presence of a hydrophobic surfactant, dihexadecyl phosphate (DHP). This MWNT film was characterized by transmission electron microscopy images (TEM) and scanning electron microscopy (SEM). The electrochemical behavior of tyrosine at the MWNT film coated GCE was examined and it is found that this MWNT-modified GCE greatly enhances the oxidation peak current of tyrosine. Effects of some important factors, including pH, scan rate and amount of modifier, on the oxidation process of tyrosine were investigated. When the signal to noise ratio (SNR) is 3, the detection limit is 1 x 10(-7) M. The low relative standard deviations of the detection of tyrosine in human morning urine (3.3%) and white wine (5.2%) suggest a good reproducibility of the modified electrode. 相似文献
12.
《中国测试》2015,(11):50-54
建立分子印迹聚合物修饰碳糊电极测定药物中槲皮素含量的新方法。以槲皮素为模板分子,甲基丙烯酸为功能单体,偶氮二异丁腈为引发剂,乙二醇二甲基丙烯酸酯为交联剂,通过沉淀聚合法制得槲皮素分子印迹聚合物,以m(石墨+聚合物):m(石蜡)=4∶1比例混合制成的印迹聚合物修饰碳糊电极作为工作电极。在0 V富集150 s,然后从0~0.6 V以100 m V/s扫速线性扫描,记录其在0.338 V的峰电流。槲皮素物质量浓度在1.25×10-6~4.0×10-5 mol/L与峰电流呈良好的线性关系(r=0.995 0),检出限为4.72×10-8mol/L,应用该方法测定胶囊中槲皮素的含量,测得回收率为96.7%~105.6%。该修饰电极具有较高的选择性和灵敏度,可用于槲皮素的测定。 相似文献
13.
Jafarei Shayesteh Asadollahzadeh Hamideh Rastakhiz Nahid Ghazizadeh Mahdieh Mohammadi Sayed Zia 《Journal of Materials Science: Materials in Electronics》2022,33(15):11813-11824
Journal of Materials Science: Materials in Electronics - Norepinephrine (NE) is one of the most important catecholamine neurotransmitters in the central nervous system and play an important role in... 相似文献
14.
Zarandi Mostafa Poursoltani Beitollahi Hadi 《Journal of Materials Science: Materials in Electronics》2022,33(25):19723-19733
Journal of Materials Science: Materials in Electronics - In present work, a novel and facile electrode was constructed using the modification of carbon paste electrode (CPE) with N-doped reduced... 相似文献
15.
An evaluation using paraffin oil based, Acheson 38 carbon paste electrodes modified with α-hydroxyisobutyric acid (HIBA) to preconcentrate f-elements cathodically is described. The modified paste was made by directly mixing solid HIBA into the carbon paste. A chemically reversible cyclic voltammogram for HIBA was observed on this modified carbon paste, which was found to be a non-Nerstian, single electron transfer process. Lanthanides (less promethium) were found to accumulate onto the electrode surface during a 30 s electrodeposition step at -0.4 V vs Ag/AgCl from 0.1 M LiCl. The elements were then stripped off into a 2% HNO(3) solution by an oxidative step at +0.8 V vs Ag/AgCl; quantitative removal from the electrode was confirmed by ICPMS. Ultratrace solutions with initial concentrations down to 5 parts per quadrillion (ppq) were preconcentrated in 5 min above our instrumental limit of detection (LOD) of around 1 ppt for lanthanides. 相似文献
16.
Hajar Shekarchizadeh Ali A. Ensafi Mahdi Kadivar 《Materials science & engineering. C, Materials for biological applications》2013,33(6):3553-3561
A novel and selective electrochemical sensor was successfully developed for the determination of sucrose by integrating electropolymerization of molecularly imprinted polymer with multiwall carbon nanotubes. The sensor was prepared by electropolymerizing of o-phenylenediamine in the presence of template, sucrose, on a multiwall carbon nanotube-modified glassy carbon electrode. The sensor preparation conditions including sucrose concentration, the number of CV cycles in the electropolymerization step, pH of incubation solution, extraction time of template from the imprinted film and the incubation time were optimized using response surface methodology (RSM). A mixture of acetonitrile/acetic acid was used to remove the template. Hexacyanoferrate(II) was used as a probe to characterize the sensor using electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. Capturing of sucrose by the modified electrode causes decreasing the response of the electrode to hexacyanoferrate(II). Calibration curve was obtained in the sucrose concentration range of 0.01–10.0 mmol L? 1 with a limit of detection 3 μmol L? 1. This sensor provides an efficient way for eliminating interferences from compounds with similar structures to sucrose. The sensor was successfully used to determine sucrose in sugar beet juices with satisfactory results. 相似文献
17.
Navid Nasirizadeh Zahra Shekari Hamid R. Zare Somayeh Makarem 《Materials science & engineering. C, Materials for biological applications》2013,33(3):1491-1497
In the present study, a modified carbon paste electrode (CPE) containing multi-wall carbon nanotubes and an indenedione derivative(IMWCNT?CPE) was constructed and was successfully used for dopamine(DA) electrocatalytic oxidation and simultaneous determination of DA and uric acid (UA). Cyclic voltammograms of the IMWCNT?CPE show a pair of well-defined and reversible redox. The obtained results indicate that the peak potential of DA oxidation at IMWCNT?CPE shifted by about 65 and 185 mV toward the negative values compared with that at a MWCNT and indenedione modified CPE, respectively. The electron transfer coefficient, α, and the heterogeneous electron transfer rate constant, k′, for the oxidation of DA at IMWCNT?CPE were calculated 0.4 ± 0.01 and (1.13 ± 0.03) × 10? 3 cm s? 1, respectively. Furthermore, differential pulse voltammetry (DPV) exhibits two linear dynamic ranges of 1.9–79.4 μM, and 79.4–714.3 μM and a detection limit of 0.52 μM for DA determination. Then IMWCNT?CPE was applied to the simultaneous determination of DA and UA with DPV. Finally, the activity of the modified electrode was also investigated for determination of DA and UA in real samples, such as injection solution of DA and urine, with satisfactory results. 相似文献
18.
Voltammetric determination of 4-nitrophenol using a modified carbon paste electrode based on a new synthetic crown ether/silver nanoparticles 总被引:1,自引:0,他引:1
Gholamhossein Rounaghi Roya Mohamadzadeh kakhkiHossein Azizi-toupkanloo 《Materials science & engineering. C, Materials for biological applications》2012,32(2):172-177
A novel modified carbon-paste electrode (CPE) with a new synthetic ligand: 6,7,9,10,17,18,19, 20,21, 22-decahydrodibenzo[h,r][1,4,7,11,15]trioxadiazacyclonanodecine-16,23dione(DTD)/Ag nanoparticles (AgNP) was employed for 4-nitrophenol measurement in natural water. Various parameters such as pH, modifier, accumulation time and scan rate were optimized. The proposed electrode showed a good response towards 4-nitrophenol determination. Under the optimized conditions the reduction peak current, showed a good linear relationship with the nitrophenol concentration in the range comprised between 1 × 10− 6 mol L− 1 and 1 × 10− 4 mol L− 1. The developed electrode was successfully applied for the determination of 4-nitrophenol in water samples. 相似文献
19.
Jessica E. Weber Shreekumar Pillai Manoj Kumar Ram Ashok Kumar Shree R. Singh 《Materials science & engineering. C, Materials for biological applications》2011,31(5):821-825
Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor. 相似文献
20.
In this paper, thionine was electro-polymerized onto the surface of carbon nanotube (CNT)-modified glassy carbon (GC) to fabricate the polythionine (PTH)/CNT/GC electrode. It was found that the electro-reduction current of nitrite was enhanced greatly at the PTH/CNT/GC electrode. It may be demonstrated that PTH was used as a mediator for electrocatalytic reduction of nitrite, and CNTs as an excellent nanomaterial can improve the electron transfer between the electrode and nitrite. Therefore, based on the synergic effect of PTH and CNTs, the PTH/CNT/GC electrode was employed to detect nitrite, and the high sensitivity of 5.81 μA mM− 1, and the detection limit of 1.4 × 10− 6 M were obtained. Besides, the modified electrode showed an inherent stability, fast response time, and good anti-interference ability. These suggested that the PTH/CNT/GC electrode was favorable and reliable for the detection of nitrite. 相似文献