首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While interfacial graphite formation and subsequent poor film adhesion is commonly reported for chemical vapor deposited hard carbon films on cobalt-based materials, we find the presence of O2 in the feedgas mixture to be useful in achieving adhesion on a CoCrMo alloy. Nucleation studies of surface structure before formation of fully coalesced hard carbon films reveal that O2 feedgas helps mask the catalytic effect of cobalt with carbon through early formation of chromium oxides and carbides. The chromium oxides, in particular, act as a diffusion barrier to cobalt, minimizing its migration to the surface where it would otherwise interact deleteriously with carbon to form graphite. When O2 is not used, graphitic soot forms and films delaminate readily upon cooling to room temperature. Continuous 1 μm-thick nanostructured carbon films grown with O2 remain adhered with measured hardness of 60 GPa and show stable, non-catastrophic circumferential micro-cracks near the edges of indent craters made using Rockwell indentation.  相似文献   

2.
Toxic effects and biological reaction of metallic corrosion and wear products are an important concern for metal on metal artificial joints. Corrosion tests were conducted to study the susceptibility to pitting and localized corrosion, with three coatings, CrN, TiN and DLC, applied to a wrought high carbon Co–Cr–Mo alloy substrate material. Corrosion testing involved the measurement of potential time transients during immersion in a physiological solution and cyclic polarization of specimen potentials into the transpassive range followed by reversal of the potential to scan in the cathodic direction to regain the rest potential Erest. Resistance to pitting and localized corrosion was assessed by determining the transpassive breakdown potential E bd and if any hysteresis generated during the reverse cyclic scan may have caused crossover with the original anodic scan. Three different surface coating conditions were tested namely: (1) as-coated, (2) polished, and (3) indented to penetrate the coating by diamond pyramid hardness indentor. Results showed that all three coatings produced significant improvements in corrosion resistance compared to performance of the wrought cobalt alloy but that some corrosive attack to both the CrN and TiN coatings occurred and some risk of attack to the cobalt alloy substrate existed due to coating defects or when damage to the coating occurred. TiN coatings were highly effective in preventing corrosion provided they were thick enough to produce complete coverage. Thin TiN coatings displayed some tendency to encourage localized attack of the cobalt alloy at coating defects or where the coating suffered mechanical damage. CrN coatings underwent transpassive breakdown more easily and some degree of pitting at defects within the coating was observed, especially when the CrN coating was polished before the test. No corrosive attack of the cobalt alloy substrate was observed when the CrN coating was mechanically damaged by indentation. DLC coatings produced were much thinner than either of the other two coatings and proved to be rather fragile. They were less effective in preventing apparently high corrosion currents and possibly high rates of corrosion.  相似文献   

3.
Long-term thermal stability is often needed for high temperature alloys used in a variety of industrial applications for extended operating lifetimes. In this paper, the effects of thermal exposures or aging on the mechanical properties and microstructure of a Ni–Co–Cr–Si alloy (HAYNES® HR-160® alloy) were studied. It includes both short- and long-term elevated temperature exposures ranging from 649 °C to 1093 °C (1200–2000 F) for duration of 6 min (0.1 h) to 6 years (50,000 h). The residual room temperature (RT) tensile and Charpy-V impact toughness properties were evaluated and correlated to microstructural changes as well as to fracture surfaces of the tensile tested samples. It was found that the RT ductility and impact toughness of the HR-160 alloy decreased continuously with time. A significant percentage of reduction in the ductility occurred in the initial 1000 h of exposure and the subsequent exposure led only to a minimal loss of ductility and impact toughness values. The concomitant microstructural changes were studied using optical metallography, SEM/EDS and X-ray diffraction of extracted residues. The results presented in this paper demonstrated that the HR-160 alloy exhibits good thermal stability characterized by >16% RT elongation after 50,000 h exposures at 649 °C, 760 °C, and 871 °C.  相似文献   

4.
5.
Using the results of a thermodynamic analysis, a Co–Cr–Mo alloy was successfully nitrided in nitrogen at temperatures of 1073–1473 K. The near-surface microstructure of the treated Co–Cr–Mo alloy was characterized using X-ray diffraction, field-emission scanning electron microscopy, electron probe micro-analyzer, and transmission electron microscopy equipped with energy-dispersive X-ray spectroscopy. The results indicated that the highest nitriding efficiency was achieved at the treatment temperature of 1273 K, with the size and coverage of the nitride particles on sample's surface increasing with an increase in the treatment duration. After nitriding at 1273 K for 2 h, numerous nitride particles, consisting of an outer Cr2N layer and an inner π phase layer, were formed on top of the nitrogen-containing γ phase, and some π phase also precipitated in the alloy matrix at the sub-surface level.  相似文献   

6.
The design freedom of powder bed fusion process selective laser melting(SLM) enables flexibility to manufacture customized, geometrically complex medical implants directly from the CAD models. Cobased alloys have adequate wear and corrosion resistance, fatigue strength, and biocompatibility, which enables the alloys to be widely used in medical devices. This work aims to investigate the evolution of microstructures and their influence on tribological property of CoCrMo alloy processed by SLM and aging heat treatment. The results showed that very weak 110 texture along the building direction and microsegregation along cellular boundaries were produced. The presence of high residual stress and fine cellular dendrite structure has a pronounced hardening effect on the as-SLM and aging-treated alloys at moderate temperatures. Furthermore, the hexagonal ε phase transformed from the γ matrix during SLM became significant after subsequent aging at moderate temperatures, which further increased the nanohardness and scratch resistance. High temperature(1150℃) heating caused homogenized recrystallization microstructure free of residual stress and ε phase, which sharply decreased the hardness and scratch resistance. The material parallel to the building direction exhibited improved tribological property in both SLMed and aging-treated alloy than that of the material perpendicular to the building direction. The anisotropy in frictional performance may be considered when designing CoCrMo dental implants using laser additive manufacturing.  相似文献   

7.
Wear behavior of carbide coated Co–Cr–Mo implant alloy   总被引:1,自引:0,他引:1  
The wear behavior of a new type of metal carbide surface coating on Co–Cr–Mo implant alloy was studied. The coating was created using a microwave plasma-assisted reaction. Codeposition of impurity diamond film, diamond particles, and soot was prevented by controlling process conditions. Wear tests were carried out using a sapphire ball-on-Co–Cr–Mo disc unidirectional sliding configuration with harsh conditions of high contact stress and slow sliding speed in both no-lubrication, and deionized water lubrication environments. In the case of uncoated Co–Cr–Mo discs, the effect of deionized water lubrication was remarkable and reduced the wear factor by one order of magnitude compared to the no-lubrication tests. The wear factor of carbide coated Co–Cr–Mo discs was slightly smaller than that of uncoated Co–Cr–Mo discs with deionized water lubrication (2.7×10–6 mm3N–1m–1 vs. 4.2×10–6mm3N–;1m–1). The addition of deionized water lubrication did not greatly affect the wear factor of carbide coated Co–Cr–Mo discs. The influence of surface geometry resulting from the brain coral-like surface morphology of carbide layers on wear behavior was analyzed considering stress concentrations and effective contact area.  相似文献   

8.
Abstract

A novel thermal spray material of Mo–Co–Cr–B with high durability in molten alloys has been developed to utilise for die casting parts and for galvanising bath parts. In the present paper, detonation gun (D gun) spray technique was used to deposit a Mo–Co–Cr–B alloy coating onto 316L stainless steel substrate, and the microstructures and mechanical properties of the coating system were studied using XRD, SEM, tensile test and Vickers microhardness. The results show that the microstructures of the coating consisted of ternary transition metal borides matrix CoMo2B2, CoMoB, as well as a little amount of binary borides, MoB and CrB. The ternary borides matrix contained both amorphous phase and nanocrystalline grains with a size of 60±35 nm. The bond strength of the coating decreases with increasing thickness of the as sprayed coatings. The anisotropy in the mechanical properties between the cross-section and plan section of the coatings is examined. Comparing the microhardness and bond strength of detonation sprayed Mo–Co–Cr–B coating with those of HVOF sprayed Mo–Co–Cr–B coating, it can be concluded that the detonation spray process has a better performance than HVOF spray process.  相似文献   

9.
We report on an alternative route for the synthesis of crystalline Co–28Cr–6Mo alloy, which could be used for surgical implants. Co, Cr and Mo elemental powders, mixed in an adequate weight relation according to ISO Standard 58342-4 (ISO, 1996), were used for the mechanical alloying (MA) of nano-structured Co-alloy. The process was carried out at room temperature in a shaker mixer mill using hardened steel balls and vials as milling media, with a 1:8 ball:powder weight ratio. Crystalline structure characterization of milled powders was carried out by X-ray diffraction in order to analyze the phase transformations as a function of milling time. The aim of this work was to evaluate the alloying mechanism involved in the mechanical alloying of Co–28Cr–6Mo alloy. The evolution of the phase transformations with milling time is reported for each mixture. Results showed that the resultant alloy is a Co-alpha solid solution, successfully obtained by mechanical alloying after a total of 10 h of milling time: first Cr and Mo are mechanically prealloyed for 7 h, and then Co is mixed in for 3 h. In addition, different methods of premixing were studied. The particle size of the powders is reduced with increasing milling time, reaching about 5 μm at 10 h; a longer time promotes the formation of aggregates. The morphology and crystal structure of milled powders as a function of milling time were analyzed by scanning electron microscopy and XR diffraction.  相似文献   

10.
We propose an electrolyte based on chromium sulfate (1 mole/liter Cr(III)) and containing both formic acid and carbamide (urea). This electrolyte enables one to get Cr coatings with a thickness of several micrometers. It is shown that the current yield and deposition rate increase as the current density and pH value increase and temperature decreases. We select the optimal conditions of electrolysis under which bright high-quality chromium deposits are obtained. In this case, the deposition rate of the metal varies from 0.5 to 1.5 μm/min. It is shown that the optimal concentration of both formic acid and carbamide is equal to 0.5 mole/liter. The necessity of using certain surface-active substances to prevent the formation of pitting on the surface of the deposit is demonstrated. Moreover, it is discovered that the microhardness of Cr deposits attains its highest values (950–980kg/mm2) for currents with densities of 30–35 A⋅dm−2 and decreases as the pH value and temperature increase. Electrolysis is realized by using titanium–manganese-dioxide anodes and, hence, it is not necessary to separate the cathodic and anodic spaces.  相似文献   

11.
In this study, titanium (Ti) and titanium–zirconium (TiZr) alloy samples fabricated through powder metallurgy were surface modified by alkali-heat treatment and calcium (Ca)-ion-deposition. The alteration of the surface morphology and the chemistry of the Ti and TiZr after surface modification were examined. The bioactivity of the Ti and TiZr alloys after the surface modification was demonstrated. Subsequently, the cytocompatibility of the surface modified Ti and TiZr was evaluated via in vitro cell culture using human osteoblast-like cells (SaOS2). The cellular attachment, adhesion and proliferation after cell culture for 14 days were characterized by scanning electron microscopy (SEM) and MTT assay. The relationship between surface morphology and chemical composition of the surface modified Ti and TiZr and cellular responses was investigated. Results indicated that the surface-modified Ti and TiZr alloys exhibited excellent in vitro cytocompatibility together with satisfactory bioactivity. Since osteoblast adhesion and proliferation are essential prerequisites for a successful implant in vivo, these results provide evidence that Ti and TiZr alloys after appropriate surface modification are promising biomaterials for hard tissue replacement.  相似文献   

12.
This article presents a study of solidification behavior and the corresponding microstructure of Co–Cr–W and Co–Cr–Mo alloy systems using the differential scanning calorimetry technique. The influence of main constituents on the solidification behavior and associate microstructures of these alloys are investigated. It is found that chemical composition influences significantly the solidification behavior of cobalt-based alloys. Solution-strengthened alloy has the highest solidification temperature and narrowest solidification range. Presence of carbon decreases the solidification temperature and increases the solidification range. Addition of boron greatly decreases the solidification temperature. Carbon content dominates the solidification behavior of cobalt-based alloys when the contents of the solution-strengthening elements Mo and Ni are within their saturation in the solution matrix. However, as these contents reach a certain level, formation of intermetallic compounds changes the solidification behavior of these alloys remarkably. Increase in the contents of solution-strengthening elements reduces the solid solution transformation temperature and the eutectic temperature when carbon content is constant.  相似文献   

13.
Abstract

An adiabatic calorimeter was used to measure the molar heat capacities and heats of transformation of iron alloys containing up to 14 at.-% Cr and 15 at.-% Co over the temperature range 700–1500 K. A Sucksmith magnetic balance was used to measure the magnetic properties of these alloys and of Fe–Co and Fe–Cr alloys previously investigated calorimetrically. In all but one of the ternary alloys the α → γ transformation occurred at a temperature below the Curie temperature (Tc), but the heats of transformation, corrected to the transformation temperature of pure iron (1184 K), correlated well with the difference between the extrapolated Curie temperature and 1184 K, as had been observed previously for alloys with clearly defined values of Tc. The fact that all observations fell on the same curve supported the proposal that a significant amount of magnetic order remains after the α → γ transformation for most iron alloys.

MST/198  相似文献   

14.
Processing of Al alloys via metastable amorphous intermediates can give much higher volume fractions of dispersed strengthening phases than in conventional precipitation- or dispersion-hardened systems. Here, we report a study on an Al–Ni–Co–Zr–Y alloy processed by gas atomization and consolidated/devitrified by warm extrusion. X-ray diffraction and electron microscopy are used to reveal the effects of heat-treatments at 300–500 °C for up to 96 h on the phase stability and coarsening behavior of the alloy. In all samples, the microstructure contains 22 % by volume of Al19(Ni,Co)5Y3 plates surrounded by grains of FCC Al. Samples heat-treated at 350 °C and above also contain fine Al3Y and Al3Zr particles as minority phases. The softening of the alloy is limited for heat-treatment temperatures of up to 400 °C, and the Al19(Ni,Co)5Y3 plates coarsen slowly. At higher temperatures, abnormal coarsening is observed with the development of a secondary population of much larger Al19(Ni,Co)5Y3 plates. An analysis of the coarsening kinetics gives a constant coarsening exponent of 3, but a distinct transition in the activation energies. These values suggest that the normal coarsening at lower temperatures occurs by short-circuit diffusion, whereas the abnormal coarsening at higher temperatures involves lattice diffusion. The Al grain size is dictated by the Al19(Ni,Co)5Y3 inter-plate separation, and grain growth is limited by the extent of plate coarsening. Such systems could form the basis of new high-strength high-temperature Al alloys for structural applications.  相似文献   

15.
Hydroxyapatite/chitosan–silica (HApCSi) nanocomposites were synthesized by co-precipitated method and their potential application as filler materials for bone regeneration were investigated in simulated body fluid (SBF). To study their biocompatibility, they were cultured with rat osteoblast-like UMR-106 cells for 3, 7, 14, and 21 days. Studies of the silica contents in chitosan matrix showed the presence of silinol (Si–OH) groups in CSi hybrid and their decrease after being composited with calcium phosphate (CaP) which is desirable for the formation of the apatite. XRD and TEM studies showed that the HAp formed in the CSi matrix were nanometer (20–40 nm) in size. Nanocomposites of HApCSi20 processed with 20%v/v silica whisker showed a micro hardness of 84.7 ± 3.3 MPa. Mineralization study in SBF showed the formation of apatite crystals on the HApCSi surface after being incubated for 7 days. In vitro biocompatibility, cell morphology, proliferation, and cell adhesion tests confirmed the osteoblast attachment and growth on the HApCSi20 surface. The density of cells and the production of calcium nodules on the substrate were seen to increase with increasing cultured time. The mechanical evaluation and in vitro experiment suggested that the use of HApCSi composite will lead to the formation of new apatite particles and thus be a potential implant material.  相似文献   

16.
In the present study, the influence of chromium on the microstructure and etching behaviour of the polycrystalline alloy Ni–13Fe–8Al–4Ti (at-%) has been examined. The alloy was recently designed for nanomembrane fabrication, but although it showed the necessary γ/γ′ microstructure with cubic, well aligned γ′ precipitates, it proved to be unsuitable for nanomembrane fabrication as the γ matrix was dissolved during chemical etching. To obtain the passivation of the γ matrix, chromium has been added in further modifications containing 1, 2, 3 and 4 at-% chromium. Moreover, the influence of heat treatment and the different cooling rates of heat treatment in air/vacuum have been investigated. For chemical phase extraction, the application of the chemical etchants MoO3 acid and ‘G’ etchant has been examined, the formability was characterised by Vickers hardness testing. The main purpose of the present study, namely the passivation of the γ matrix, could be achieved by the addition of 4 at-% chromium and etching with ‘G’ etchant.  相似文献   

17.
Abstract

Co–Pt–W alloy films were prepared by the electroplating method to replace costly sputtering on a copper substrate. Effects of different pH values and current densities on composition, microstructure and magnetic properties of films were investigated. With the rise in pH values, the amounts of tungsten and cobalt decrease simultaneously as a result of less tungstate oxides in higher OH– concentration solution. Almost all the deposited films were crystalline and formed fcc CoPt(111) and hcp CoPt(002). Co–Pt–W alloy films intend to change from fcc to hcp structure when the current density was >20 mA cm?2. It was found that hcp structures of Co–Pt–W alloy films possess high coercivity performance. Moreover, higher pH values induced lower saturation magnetisation while higher current densities could result in larger saturation magnetisation. Dissimilar surface morphology could be detected under different current densities. With increasing the current density, grains of films tend to agglomerate and grow perpendicularly to substrate. Bigger agglomerated particles and ‘hill-like’ structure could be observed when the current density was up to 30 mA cm?2.  相似文献   

18.
Titanium oxide (TiO2) nanotube arrays were prepared by anodization of Ti/Au/Ti trilayer thin film DC sputtered onto forged and cast Co–28Cr–6Mo alloy substrate at 400 °C. Two different types of deposited film structures (Ti/Au/Ti trilayer and Ti monolayer), and two deposition temperatures (room temperature and 400 °C) were compared in this work. The concentrations of ammonium fluoride (NH4F) and H2O in glycerol electrolyte were varied to study their effect on the formation of TiO2 nanotube arrays on a forged and cast Co–28Cr–6Mo alloy. The results show that Ti/Au/Ti trilayer thin film and elevated temperature sputtered films are favorable for the formation of well-ordered nanotube arrays. The optimized electrolyte concentration for the growth of TiO2 nanotube arrays on forged and cast Co–28Cr–6Mo alloy was obtained. This work contains meaningful results for the application of a TiO2 nanotube coating to a CoCr alloy implant for potential next-generation orthopedic implant surface coatings with improved osseointegrative capabilities.  相似文献   

19.
Ti–48Al–2Cr–2Nb (at.%) (γ-TiAl), a gamma titanium aluminide alloy originally designed for aerospace applications, appears to have excellent potential as implant material. Thermal treatment of γ-TiAl renders this alloy extremely corrosion resistant in vitro, which could improve its biocompatibility. In this study, the surface oxides produced by thermal oxidation (at 500°C, and at 800°C for 1 h in air) on γ-TiAl were characterized by X-ray photoelectron spectroscopy (XPS). hFOB 1.19 cell adhesion on thermally oxidized γ-TiAl was examined in vitro by a hexosaminidase assay, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) after 1, 7 and 14 days. Ti–6Al–4V surfaces were used for comparison. Hexosaminidase assay data and CLSM analysis of focal contacts and cytoskeleton organization showed no differences in cell attachment on autoclaved and both heat-treated γ-TiAl surfaces at the different time points. SEM images showed well organized multi-layers of differentiated cells adhered on thermally oxidized γ-TiAl surfaces at day 14. Unexpectedly, thermally oxidized Ti–6Al–4V surfaces oxidized at 800°C exhibited cytotoxic effects on hFOB 1.19 cells. Our results indicate that thermal oxidation of γ-TiAl seems to be a promising method to generate highly corrosion resistant and biocompatible surfaces for implant applications.  相似文献   

20.
A compact and flat fluoride coating with some pores was prepared on a Mg–Zn alloy in order to control its degradation behavior. The electrochemical tests demonstrated that the real impedance (Zre) of the fluoride-coated Mg–Zn was approximately 10 times as large as that of the untreated alloy. The free corrosion potential (Ecorr), compared to that of the uncoated Mg–Zn alloy, increased 646 mV for the coated metal. The free corrosion current (Icorr) of the Mg–Zn specimen with the fluoride film was about one tenth of that of the uncoated one. The in vitro dynamic degradation tests showed that the average weight loss of the fluoride-coated Mg–Zn was lower than that of the untreated alloy in the initial 4 h of the tests, indicating the film could function as a barrier coating on Mg–Zn matrix. However, the coating cracked and peeled severely after 4 h dynamic tests, which implied that the fluoride coating could not endure the sustaining washing of the modified simulated body fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号