首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the thermal conductivity of epoxy composites containing two hybrid fillers which are multi-walled carbon nanotubes (MWCNTs) and aluminum nitride (AlN). To form a covalent bonds between the fillers and the epoxy resin, poly(glycidyl methacrylate) (PGMA) were grafted onto the surface of nano-sized MWCNTs via free radical polymerization and micro-sized AlN was modified by zirconate coupling agent. Results show that functionalized fillers improve thermal conductivity of epoxy composites, due to the good dispersion and interfacial adhesion, which is confirmed by scanning electron microscope. Furthermore, the hybrid fillers provide synergetic effect on heat conductive networks. The thermal conductivity of epoxy composites containing 25 vol.% modified AlN and 1 vol.% functionalized MWCNTs is 1.21 W/mK, comparable to that of epoxy composites containing 50 vol.% untreated AlN (1.25 W/mK), which can reduce the half quantity of AlN filler used.  相似文献   

2.
《Materials Research Bulletin》2004,39(4-5):581-590
Lead(II) tungstate and zinc(II) tungstate were prepared by a solution route and sintered at 973 K in the form of cylindrical discs. Experimental results on PbWO4 (PW) and WO3 (WO) composites for humidity sensing are described. Sintered polycrystalline discs of PbWO4 (PWWO-10), WO3 (PWWO-01), ZnWO4 (ZWWO-10) and composites of PW or ZW and WO in the mole ratios 8:2, 6:4, 4:6, 2:8 designated as PWWO and ZWWO-82, 64, 46 and 28, respectively and doped with 2 mol% of Li+ were studied. The composites were subjected to dc conductance measurements over the temperature range 373–673 K in air atmosphere from which activation energies were determined. The activation energy values for dc conductance were found to be in the range of 1.09–1.30 eV. The composites were identified by powder XRD data. The scanning electron microscopy (SEM) studies were carried out to study the surface and pores structure of the sensor materials. The composites were subjected to dc resistance measurements as a function of relative humidity in the range of 5–98% RH, achieved by different water vapor buffers thermostated at room temperature. The sensitivity factor (Sf=R5%/R98%) measured at 298 K revealed that PWWO-28 and ZWWO-46 composites have the highest humidity sensitivity factor of 17 615±3000 and 2666±550, respectively. The response and recovery time for these humidity sensing composites were good.  相似文献   

3.
In this work, potassium strontium bromide activated with divalent europium, (KSr2Br5:Eu) has been studied. It has a monoclinic crystal structure and a density of 3.98 g/cm3. Two single crystals of KSr2Br5 doped with 5% Eu2+, with diameters of 13 mm and 22 mm, were grown in a two zone transparent furnace via the Bridgman technique. The X-ray excited emission spectrum consisted of a single peak at ∼427 nm due to the 5d–4f transition in Eu2+. The measured light yield and energy resolution at 662 keV was 75,000 ph/MeV and 3.5%. At low energies KSr2Br5:Eu 5% also displays good energy resolution, 6.7% at 122 keV and 7.9% at 59.5 keV.  相似文献   

4.
This work discusses the influence of nitrogen ion (N+) implantation on wear resistance of WC–Co composite. The WC–Co samples were bombarded at low N+ ions energies of 20 and 30 keV and doses of 1017 and 2 × 1017 ions cm−2. Tribological tests were conducted against cylindrical 100Cr6 pin at 200 N load and 180 mm s−1 speed. The tests use water lubrication and four sample types with Co binder content ranging in 6.5–25%. The X-ray spectra reveal that implantation is able to transform the original [CFC] Co structure of virgin surface to harder amorphous phase. However, it was found that excessive low binder content alters the wear behavior on non-implanted samples since it causes wear rate transition from 0.59 × 10−7 to 2.1 × 10−7 mm3/(mm2 s) imposing hence instable wear regime. The SEM micrographs confirm the formation of transferred film within the implanted worn surface owing to (i) an enhancement in Co flow and (ii) a generation of oxides (Fe2O3, Fe3O4, Co2O3, WO2). While the formed film acts to inhibit severe abrasion, the material removal process combining cobalt flow and carbide grains pull-out seems to be associated with oxidation mechanisms to be accentuated with energy increase. The most improvements in wear resistance were observed on samples with the highest Co content and the results were found more sensitive to N+ ions implantation energy than dose.  相似文献   

5.
Tungsten trioxide (WO3) powders were prepared via a simple hydrothermal method. The morphology, structure and photochromic activity of the synthesized WO3 powders were studied by X-ray diffraction, scanning electron microscopy and UV–vis spectrophotometer combined with color difference meter. The results showed the synthesized WO3 powders with hexagonal phase got much better photochromic properties than the WO3 powders with cubic phase, the ones not appear until about 160 °C. Besides, the WO3 powder synthesized at 120 °C exhibited the best photochromic properties of the samples prepared below 160 °C, the particles of which formed a shape of clusters of cactus with uniform size and good dispersion.  相似文献   

6.
《Materials Research Bulletin》2006,41(8):1447-1454
The ceramics were prepared successfully by Pb3O4 and WO3 additions to 0.90Pb(Zr,Ti)O3–0.03Pb(Fe2/3W1/3)O3–0.07Pb(Mn1/3Nb2/3)O3 (0.90PZT–0.03PFW–0.07PMN). Effects of the additions on the structure, bulk density and electrical properties of ceramics were investigated. The results revealed that the proper additions of WO3 with 2.0 wt.% Pb3O4 excess could form liquid phase that promoted the densification of the ceramics. The fracture mode changed from transgranular to intergranular as increasing WO3 with 2.0 wt.% Pb3O4 excess. The piezoelectric and dielectric properties were also promoted by excess of Pb3O4 and WO3 additions. The optimized electrical properties were obtained at excess of 2.0 wt.% Pb3O4 and 0.15 wt.% WO3. The parameters were as follows: d33 = 351 pC/N, Kp = 0.64, Qm = 1882, ɛr = 1798, tan δ = 0.0052, Pr = 19.94 μC/cm2 and Ec = 11.98 kV/cm, which shows high Kp, Qm, d33 and low tan δ can be obtained simultaneously by adding WO3 addition to Pb3O4 modified PZT–PFW–PMN system.  相似文献   

7.
Mixtures of 0.1, 0.3, and 0.5 mmol ammonium metatungstate hydrate (AMH), and poly (vinyl alcohol) (PVA) were electrospun by a + 20 kV direct voltage to synthesize fibers. Those of 0.5 mmol AMH were further calcined to have PVA removed and crystalline degree improved. At 500 °C and 2 h calcination, WO3 nanofibers, including two main stretching modes, 3.24 eV direct energy gap, and 378 nm wavelength violet emission were detected. A possible formation mechanism of WO3 nanofibers was proposed according to the experimental results.  相似文献   

8.
《Materials Letters》2005,59(14-15):1859-1865
SnO2-based varistors doped with ZnO and WO3 were prepared by mixed oxide method. Experimental evidence shows that the increase in ZnO amount increases the volume and microstrain of unit cell while the WO3 promotes a decrease. The effect of ZnO and WO3 additives could be explained by the substitution of Sn4 +  by Zn2 +  and W6 + . The addition of WO3 inhibits the grain growth due to the segregation in the grain boundary without influence in the densification of the samples. Besides that, an increase in the electrical resistance of the SnO2–ZnO–WO3 system was observed independent of the WO3 concentration.  相似文献   

9.
Calcium tungsten bronzes CaxWO3 (0.01  x  0.15) were synthesized by hybrid microwave method from mixtures of CaO, WO3 and tungsten powder. Single-phased samples can be obtained by microwave heating within 40 min. With the increase of calcium content, the crystal structure of CaxWO3 transforms from orthorhombic (0.01  x  0.02) to tetragonal (0.03  x  0.11) and then to cubic (0.12  x  0.15). The average size of crystallites is in the range 1–5 μm. All samples show semiconductor behaviour in their temperature dependence of resistivity. The electrical conduction mechanism changes from variable-range hopping to the thermally activated mechanism when x > 0.12.  相似文献   

10.
Layered rocksalt-type LiFeO2 particles (O3-LiFeO2) with average particle sizes of ca. 40 and 400 nm were synthesized by an ion exchange reaction from α-NaFeO2 precursors. X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images confirmed the formation of nanosized O3-LiFeO2. 40-nm LiFeO2 exhibited a higher discharge capacity (115 mAh g?1) than 400-nm LiFeO2 (80 mAh g?1), and also had better rate characteristics. The downsizing effect and cation disorder between the lithium and iron layers may have improved the electrochemical activity of the LiFeO2 particles. Transmission electron microscopy (TEM) observation indicated a phase transition from O3-LiFeO2 to a cubic lattice system during the electrochemical process. The cubic lithium iron oxide exhibited stable electrochemical reactions based on the Fe2+/Fe3+ and Fe2+/Fe0 redox couples at voltages between 4.5 and 1.0 V. The discharge capacities of 40-nm LiFeO2 were ca. 115, 210, and 390 mAh g?1 under cutoff voltages of 4.5–2.0 V, 4.5–1.5 V, and 4.5–1.0 V, respectively.  相似文献   

11.
《Materials Research Bulletin》2013,48(4):1411-1414
The present work focuses on studying the effect of nano TiO2 (0.0–25 mass%) on the sintering behavior and mechanical properties of alumina/zirconia ceramic composites. Al2O3–ZrO2–TiO2 oxides mixture was sintered at 1600 °C to obtain the desired composites. The sinterability and the technological properties of these ceramic composites, i.e. the sintering parameters and microhardness as well as thermal shock resistance were investigated. Moreover, phase composition and microstructure of the sintered bodies were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The results revealed that nano TiO2 is a beneficial component for alumina/zirconia ceramic composites. The batch containing 20 mass% TiO2 exhibited the highest sintering and mechanical properties as well as resistance to thermal shock. The obtained microstructure exhibited high compacted ceramic matrix composites.  相似文献   

12.
Polyethylene oxide–NaClO3 composite have been prepared by solution casting technique with different weight percentages as a polymer electrolyte for battery application. The prepared composites were characterized by various tools like XRD, FTIR and SEM. The X-ray diffraction analysis shows the complexation of polymer with salt and existence of both crystalline and amorphous phases. From FTIR spectra confirms the formation of PEO–NaClO3 composites. SEM images shows the grains are highly agglomerated and its average size increases with increase in salt ratio. Frequency dependence of dielectric property and ac electrical conductivity of polymer electrolytes were studied within the frequency range of 50 Hz to 5 MHz using complex impedance analysis technique. Ionic conductivity follows Arrhenius type behavior as a function of temperature. The fabricated cell of 25 wt.% of PEO–NaClO3 composites generated high current of 1.79 A.  相似文献   

13.
The mechanical behavior of composites containing micro-sized Ni particles and micro- or nano-sized Al particles, fabricated by casting/curing with epoxy, were studied to investigate their mechanical behavior for potential application as structural energetic materials. Reverse Taylor anvil-on-rod impact tests combined with high-speed digital photography provided information about the high-strain-rate transient deformation and failure response. The nano Al-containing composite exhibited a higher elastic modulus and static and dynamic compressive strengths than pure epoxy and micro Al-containing composite due to increased cross-link density, as revealed by dynamic mechanical analysis. Microstructural characterization of the cast composites revealed that micro-sized Ni and Al remained homogeneously and intimately mixed within the epoxy matrix. In contrast, the composites containing micro Ni and nano Al showed separation of the nano Al particles, effectively forming a nano Al + epoxy matrix surrounding the Ni particles and consequently altering the physical response and enhancing the mechanical properties of the composite.  相似文献   

14.
《Advanced Powder Technology》2014,25(3):1082-1086
Mechanically alloyed nanocrystalline TiC powder was short-term milled with 40 vol.% of Al powder. The powders mixture was consolidated at 1200 °C under the pressure of 4.8 GPa for 15 s and at 1000 °C under the pressure of 7.7 GPa for 180 s. The bulk materials were characterised by X-ray diffraction, light and scanning electron microscopy, energy dispersive spectroscopy, hardness, density and open porosity measurements. During the consolidation a reaction between TiC and Al occurred, yielding an Al3Ti intermetallic. The microstructure of the produced composites consists of TiC areas surrounded by lamellae-like regions of Al3Ti intermetallic (after consolidation at 1200 °C) or Al3Ti and Al (after consolidation at 1000 °C). The mean crystallite size of TiC is 38 nm. The hardness of the TiC–Al3Ti and TiC–Al3Ti–Al composites is 13.28 GPa (1354 HV1) and 10.22 GPa (1041 HV1) respectively. The produced composites possess relatively high hardness and low density. The results obtained confirmed satisfactory quality of the consolidation with keeping a nanocrystalline structure of TiC.  相似文献   

15.
Nano- and micro-sized LiFePO4 powders were synthesized by a sodium gluconate (C6H11NaO7)-assisted hydrothermal synthesis method at 220 °C for 10 h with pH = 2–7. The resulting powders were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray spectrometer (EDS). The obtained data showed that the pH of synthesis solution played a key role in the formation of the LiFePO4 powders with different morphologies, such as ball-like microspheres, irregular microspheres with the agglomerated rods and particles, sphere-like nanoparticles and nano-ellipsoids. The results from electrochemical performance measurements revealed that the charge–discharge cycling characteristics of the samples were strongly dependent on their morphologies. In particular, the ellipsoidal LiFePO4 nanoparticles with the average size of 70–90 nm showed the highest initial discharge capacity of 150 mA h g−1 at 0.1 C rate, and cycling stability of the ellipsoidal LiFePO4 nanoparticles was optimum among all the samples prepared due to their dual advantages of high tap density and good diffusion property. The present study offers a simple morphology-controllable route, without carbon coating or doping with supervalent cations, to synthesize and to design high performance cathode materials for lithium-ion batteries.  相似文献   

16.
Ti3SiC2 filler has been introduced into SiCf/SiC composites by precursor infiltration and pyrolysis (PIP) process to optimize the dielectric properties for electromagnetic interference (EMI) shielding applications in the temperatures of 25–600 °C at 8.2–12.4 GHz. Results indicate that the flexural strength of SiCf/SiC composites is improved from 217 MPa to 295 MPa after incorporating the filler. Both the complex permittivity and tan δ of the composites show obvious temperature-dependent behavior and increase with the increasing temperatures. The absorption, reflection and total shielding effectiveness of the composites with Ti3SiC2 filler are enhanced from 13 dB, 7 dB and 20 dB to 24 dB, 21 dB and 45 dB respectively with the temperatures increase from 25 °C to 600 °C. The mechanisms for the corresponding enhancements are also proposed. The superior absorption shielding effectiveness is the dominant EMI shielding mechanism. The optimized EMI shielding properties suggest their potentials for the future shielding applications at temperatures from 25 °C to 600 °C.  相似文献   

17.
(TiC + Nd2O3)/Ti–4.5 wt.%Si composites were in situ synthesized by a non-consumable arc-melting technology. The phases in the composites were identified by X-ray diffraction. Microstructures of the composites were observed by optical microscope and scanning electron microscope. The composite contains four phases: TiC, Nd2O3, Ti5Si3 and Ti. The TiC and Nd2O3 particles with dendritic and near-equiaxed shapes are well distributed in Ti–4.5 wt.%Si alloy matrix, and the fine Nd2O3 particles exist in the network Ti + Ti5Si3 eutectic cells and Ti matrix of the composites. The hardness and compressive strength of the composites are markedly higher than that of Ti–4.5 wt.%Si alloy. When the TiC content is fixed as 10 wt.% in the composites, the hardness is enhanced as the Nd2O3 content increases from 8 wt.% to 13 wt.%, but the compressive strength peaks at the Nd2O3 content of 8 wt.%.  相似文献   

18.
We report, for the first time to our knowledge, experimental results on pedestal waveguides produced with Yb3+/Er3+ codoped Bi2O3–WO3–TeO2 thin films deposited by RF Sputtering for photonic applications. Thin films were deposited using Ar/O2 plasma at 5 mTorr pressure and RF power of 40 W on substrates of silicon wafers. The definition of the pedestal waveguide structure was made using conventional optical lithography followed by plasma etching. Propagation losses around 2.0 dB/cm and 2.5 dB/cm were obtained at 633 and 1050 nm, respectively, for waveguides in the 20–100 μm width range. Single-mode propagation was measured for waveguides width up to 10 μm and 12 μm, at 633 nm and 1050 nm, respectively; for larger waveguides widths multi-mode propagation was obtained. Internal gain of 5.6 dB at 1530 nm, under 980 nm excitation, was measured for 1.5 cm waveguide length (∼3.7 dB/cm). The present results show the possibility of using Yb3+/Er3+ codoped Bi2O3–WO3–TeO2 pedestal waveguide for optical amplifiers.  相似文献   

19.
《Advanced Powder Technology》2014,25(4):1362-1368
Mechanically alloyed nanocrystalline Al63Ni37 powder with a metastable structure of NiAl phase was mixed with 20, 30 and 40 vol.% of Al powder. The powder mixtures as well as pure powder of Al63Ni37 alloy were consolidated at 600 °C under the pressure of 7.7 GPa. The bulk materials were characterised by structural investigations (X-ray diffraction, light and scanning electron microscopy, energy dispersive spectroscopy), compression and hardness tests and measurements of density and open porosity. During the consolidation, the metastable NiAl phase transformed into the equilibrium Al3Ni2 intermetallic. The mean crystallite size of the Al3Ni2 intermetallic in the bulk materials is below 40 nm. The microstructure of the composite samples consists of Al3Ni2 intermetallic areas surrounded by lamellae-like Al regions. The hardness of the produced Al3Ni2–Al composites is in the range of 5–6.5 GPa (514–663 HV1), while that of the Al3Ni2 intermetallic is 9.18 GPa (936 HV1). The compressive strength of the composites increases with the decrease of Al content, ranging from 567 MPa to 876 MPa. The plastic elongation of the composites was increasing with the increase of Al content, while the Al3Ni2 intermetallic failed in the elastic region.  相似文献   

20.
The INE-Beamline for actinide research at the synchrotron source Ångströmquelle Karlsruhe (ANKA) completed its first year of operation in October 2006. Experiments on radioactive samples with activities up to 106 times the limit of exemption at X-ray energies from around 2.1 keV (P K-edge) to 25 keV (Pd K-edge) are possible. Three recent instrumental developments at the Nuclear Waste Disposal (INE)-Beamline are presented: a Quick-XAFS mode of operating the Lemonnier-type monochromator in fixed exit for time-resolved experiments, total electron yield detection, and the use of one-dimensional compound refractive lenses, fabricated at the Institut für Mikrostrukturtechnik (IMT) at Forschungszentrum Karlsruhe (FZK), as a virtual slit for surface sensitive X-ray studies. Future upgrades for lowering the attainable energy, installing a microfocus option, and commissioning a cryostat for radioactive samples are planned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号