首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对不同物性骨架对固液相变过程的影响研究可为中低温相变储能技术的应用和发展奠定理论基础。文章基于格子玻尔兹曼方法(LBM),采用两区域焓—多孔介质模型研究了方腔内无填充多孔介质骨架固液相变过程,从孔隙尺度分析了相变过程的流动和传热机理,探讨了方腔内填充不同导热系数的骨架对于相变过程的影响。结果表明:在无填充多孔介质骨架方腔内固液相变过程中传热方式由热传导逐渐向自然对流换热转变,形成向右倾斜的糊状区;它的存在导致相变材料不能完全融化,且在方腔的左侧壁面处存在上窄下宽的固相相变材料;在填充多孔介质骨架方腔内,融化的初始阶段,高导热系数多孔骨架的相变材料融化速率较大,对相变换热起到了明显的促进作用,而当相变过程发展至准稳态阶段,受到右壁面处的低温影响和糊状区的综合作用,相变过程受到明显的抑制,且骨架的导热系数越大,其融化率越低。  相似文献   

2.
相变储能材料的导热系数低已成为限制其应用的主要问题,在相变材料中添加高导热的固体骨架是解决这一问题行之有效的方法。文章采用三周期极小曲面方法生成固体骨架及描述糊状区的两区域模型,基于格子玻尔兹曼方法(LBM),从孔隙尺度分析了相变材料内填充高导热系数的固体骨架固液相变融化蓄热的变化规律。结果表明:生成的骨架能有效地预测复合相变材料的融化蓄热过程;相变材料的融化蓄热速率与其自然对流强度和有效导热系数有关,对于纯相变材料的融化过程,无量纲参数瑞利数越大自然对流越强,其融化速率越快;当骨架和相变材料导热系数比为10、50、100条件下,融化时间分别缩短了12%、28%、31%;多孔介质骨架孔隙率越低,复合相变材料的有效导热系数就越高,其融化蓄热速率也越高。  相似文献   

3.
由于单松弛(LBGK)格子Boltzmann模型在用反弹格式处理无滑移边界时存在缺陷。基于孔隙尺度,采用多松弛(MRT)格子Boltzmann模型研究封闭方腔内多孔介质的自然对流融化过程,其中,通过焓方法考虑相变潜热。分析了Rayleigh数和Prandtl数对融化的影响。结果表明:采用的多松弛模型能很好的预测导热和对流融化过程;多孔介质的导热融化界面不再与垂直壁面平行,自然对流融化界面呈现不规则形状;Rayleigh数和Prandtl数对多孔介质的融化有较大影响。  相似文献   

4.
采用有限元方法,数值模拟二维三角形多孔介质腔体内的自然对流及其相伴随的传热,着重分析热瑞利数、导热固体壁面厚度、固体壁面与多孔介质导热系数之比及三角形腔体高宽比对腔体内自然对流的影响.  相似文献   

5.
对流体饱和多孔介质圆管内局部热非平衡情形下非达西强迫对流的换热性能进行数值模拟.首先利用Brinkman流动模型和局部热非平衡模型建立研究问题的数学模型,预测强迫对流换热.然后使用COMSOL Multiphysics仿真软件对模型求解,获得无量纲渗流速度场、固体骨架温度场、流体温度场和努塞尔数(Nu).此外,详细分析Nu对某些关键参数的依赖性.研究发现,随着达西数(Da)和毕渥数(Bi)的增加,Nu先增加后趋于渐近值;贝克来数(Pe)的增加会导致Nu单调增加;相反,流体有效热导率与固体骨架有效热导率之比(即导热比κ)和流体有效动力黏度与实际动力黏度比(即黏度比M)的增加将导致Nu先减小后趋于渐近值.所得模型和数值结果既可用于提高工程中多孔介质圆管换热能力,也可为相关实验和解析研究提供参考.  相似文献   

6.
采用enthalpy-porosity法建立建筑墙体内置相变板层融化与凝固的传热模型,室内外空气温度采用正弦周期温度波边界条件,计算了相变板层内融化与凝固引起室内壁面温度的响应.结果表明,在相同的环境条件下,合适的相变温度能使相变材料(Phase Change Material,PCM)完全融化/凝固,室内壁面温度波动变化最小;相变材料的相变温度过高或过低,会导致部分PCM融化/凝固,过高或过低的相变温度将导致室内壁面温度波动增大;相变过程温度范围越窄,相变材料融化与凝固的份额越高,引起壁面温度波动也越小;较大的相变潜热量可以使相变材料储存较多的热量,但相变潜热量超过一定量时,再增大潜热量对室内壁温影响较小.较大的导热系数有利于强化传热,但也导致热阻减小,不利于保温,导热系数的综合效果对室内壁温影响较小.  相似文献   

7.
针对有机相变材料石蜡导热系数低的问题,通过添加多孔介质的方法以强化石蜡相变传热,并运用CFD软件对石蜡相变传热系统进行二维数值模拟.模拟结果表明:铝泡沫和石墨泡沫都能有效提高相变材料传热速率,铝泡沫的强化传热效果明显高于石墨泡沫的传热效果.随着孔隙率减小,多孔介质/石蜡复合材料的有效导热系数增大,传热速率加快,凝固需要的时间缩短.并且,孔隙率越小,经过相同凝固时间,装置内对应点温度越低.  相似文献   

8.
内置高温体倾斜多孔腔体中自然对流的LBM模拟   总被引:1,自引:0,他引:1  
为了研究内置高温体倾斜多孔腔体中流体流动与传热机理,本文采用格子Boltzmann方法从介观尺度对其多孔腔体内自然对流现象进行了模拟研究,讨论了孔隙度ε(0.4,0.7,1.0)、Da数(10~(-4),10~(-2))、Ra数(10~5~10~7)及倾角θ(0°~90°)等参数对其对流传热的影响。模拟结果表明:等温线会随着腔体倾斜向底部偏移;Da=10~(-4)时,流线呈现对称分布特性,Da数增大时,多孔方腔右侧流线会绕过高温方块经过左边区域,流线分布发生偏移。热壁面上平均Nusselt数Nuave随倾角增大呈现特定变化规律,增大孔隙度ε、Da数、Ra数时,均可以增强流体与热壁面之间的自然对流传热能力。  相似文献   

9.
介绍了一种新型带内肋片的相变蓄能换热器,利用Fluent 6.2软件研究了相变材料的融化和凝固过程,研究了不同相变层厚度,不同温度差和不同入口速度等多种工况的蓄热过程,并讨论了固液相变界面的形状、总的凝固时间,热流等物理量之间的关系.研究结果表明:热媒体(水)的温度和相变材料相变点之间的温差越大,肋片的间距越小,热媒体(水)的流速越大,所需要的融化时间越短,传热效果会越好.  相似文献   

10.
为了研究强化相变蓄热器的换热情况,搭建了矩形腔体内填充泡沫金属/石蜡的实验台,在恒壁温条件下,进行了泡沫金属/石蜡复合相变材料的融化蓄热实验。根据实验数据绘制了不同加热温度下石蜡内部温度随时间变化曲线,分析了腔体内自然对流对温度分布的影响、传热温差对蓄热时间的影响。结果表明,泡沫金属的高导热性能强化了石蜡在腔体内的融化过程,距离加热面较近的石蜡融化后产生的自然对流加速了剩余固态石蜡的融化;而且传热温差越大,自然对流越明显,蓄热时间越短。  相似文献   

11.
为了研究多孔介质方腔的自然对流传热,通过在方腔内布置固体颗粒的方式来模拟多孔介质结构,并采用虚拟区域方法求解多孔介质中的流场和温度场,分析了固体颗粒的数目、布置方式和形状对传热效率的影响.在高Rayleigh数下,多孔介质方腔自然对流的传热主要是通过壁面附近热对流产生的环流.通过直接数值模拟研究发现:当保持Rayleigh数和固体体积分数不变时,随着模拟多孔介质的颗粒数目的增加,壁面平均Nusselt数随之减小,即传热效率降低,进一步的流场分析表明规则排列时最外排颗粒到壁面距离对于传热效率有重要的影响;当固体颗粒数目和体积分数相同时,颗粒随机布置在高Rayleigh数时比颗粒规则布置有更高的传热效率,而颗粒形状对于传热效率的影响则不大.  相似文献   

12.
多孔介质有效导热系数的实验与模拟   总被引:1,自引:1,他引:0  
应用实验与数值模拟相结合的方法研究了多孔介质的有效导热系数.将分形理论与孔道网络模型相结合的分形孔道网络模型用于研究多孔介质的有效导热系数,为太阳池储热、地源热泵传热、食品干燥等方面打下了基础.模拟计算结果与实验结果吻合较好,证明了分形孔道网络模型适用于计算多孔介质的有效导热系数.研究了孔喉比、配位数、垂直热流方向喉道比例、喉道长度、孔隙率、固体骨架导热系数(K.)及流体导热系数(Kf)等多方面对多孔介质有效导热系数的影响.结果表明,垂直热流方向喉道会增大多孔介质的热阻,降低多孔介质的有效导热系数.当K8大于Kf时,随着孔喉比的增大以及喉道长度的减小,多孔介质的有效导热系数越大.当平行热流方向喉道数目相等时,多孔介质的有效导热系数随着配位数的减小而增大;当垂直热流方向喉道数目相等时,多孔介质的有效导热系数随着配位数的增大而增大.  相似文献   

13.
二维热毛细对流的MATLAB数值模拟   总被引:1,自引:0,他引:1  
热毛细对流随着近年来空间材料科学和微重力流体力学的发展引起广泛的关注.通过建立界面有相变时二维热毛细对流的数学模型,用MATLAB编程进行二维数值模拟,得到液体区温度和速度与有关无量纲参数(Ra,Ma,Pr,Bi)的内在关系,绘出了等温线分布和流函数图,证明了表面有相变对热毛细对流的影响一促进计算区域内流体的流动与传热.  相似文献   

14.
为了评估碳纳米管在强化传热技术中的应用潜力, 采用实验方法研究水基碳纳米管纳米流体在矩形封闭腔内的自然对流传热性能, 由实验得到瑞利数为1.92×105~2.52×106范围内不同颗粒体积分数的纳米流体沿矩形封闭腔热流方向的平均努塞尔数分布.采用瞬态热线法和旋转黏度仪测量水基碳纳米管纳米流体的导热系数和黏度,探究纳米流体导热系数和黏度与纳米颗粒体积分数的变化关系,分析纳米流体导热系数和黏度对纳米流体自然对流传热的影响.结果表明:在封闭腔内纳米流体沿热流方向的平均努塞尔数随着瑞利数的增加而增大,封闭腔内对流传热不断增强;与水的自然对流传热相比,在低瑞利数(Ra<8.5×105)时,纳米流体自然对流传热效果随着颗粒体积分数的增加而增强;在高瑞利数(Ra>8.5×105)时,体积分数为0.48%的纳米流体的平均努塞尔数比水大,自然对流传热得到强化,而体积分数为1.45%的纳米流体的平均努塞尔数比水小,自然对流传热减弱.  相似文献   

15.
通过实验研究了对流与混合对流条件下水流顺掠冰柱融化过程的相界面移动规律及传热特性。改变冰柱初始尺寸、初始冰柱温度、水流速度与温度等参数,采用工业摄像机记录了冰柱相界面的移动规律,构建了影像实验数据与冰柱相界面传热系数之间的映射关系。通过对实验结果的分析与讨论,获得结论如下:不同速度条件下的平均相界面位置变化趋势相似,相界面随时间呈单调递减幂函数形式变化;平均对流换热系数随水流速度或水流温度的增加而增大,且平均对流换热系数随时间呈递增趋势变化;在不同水流速度或水流温度条件下,Nu 随着Gr/Re 2先增大经过最高点后再减小;获得了水流顺掠冰柱融化过程 Nu 与Gr 、Re 、Pr 及 Ste 之间的经验关联式。  相似文献   

16.
为了揭示超临界甲烷热交换器的对流传热机理,建立了求解固体壁面导热和超临界甲烷对流传热耦合模型,分析了水平圆管内超临界甲烷非均匀流场的对流传热特性.结果表明:超临界甲烷受热过程中,Re随着主流体温度升高而单调增加,Pr出现了波峰和波谷双极值;受浮升力和重力的双重作用,圆管截面上超临界甲烷各项热物性均呈现"扭曲"和"分层"...  相似文献   

17.
以工业厂房的高宽比对室内温度分布的影响作为研究对象,采用质量守恒方程、能量守恒方程进行数值计算,研究了Ra数在103~106之间时,不同高宽比的工业厂房内的等温线、流线的分布特征和Nu数的变化。分析结果表明:随着Ra的增大,房屋内的热传输形式由热传导逐渐向对流传热转换,等温线由竖直逐渐变得水平;室内的流线为环绕于模型边界的两个涡,并随Ra的增大逐渐被分裂,在B=0.5,B=1时,分裂为2个涡流,在B=3,B=2时,分裂为3个涡流,并伴有低湍动状态;Nu数随Ra数的增大而增大,二者的曲线呈幂指数关系,B=3时Nu数最大,表明此时由高温壁面向低温壁面传递的总热量最多。  相似文献   

18.
基于流固耦合的涡轮叶顶喷气冷却特性研究   总被引:1,自引:1,他引:0  
高温燃气在涡轮动叶叶顶产生的泄漏流不但降低了涡轮效率,更是加剧了叶顶的热负荷. 本文基于实验模型,采用流固耦合的数值计算方法,研究了涡轮凹槽叶顶的间隙流与冷却射流相互作用的流动机理以及顶部喷气冷却对凹槽壁面换热效果的影响,重点分析了吹风比、冷却孔倾斜角、冷却孔进气角以及固体材料导热系数对壁面Nu数的影响. 结果表明: 大吹风比(M=1.5)能有效改善凹槽近压力面一侧肋条及底部的换热,Nu数分布更加均匀;进气角产生的“喷射效应”改变了冷却气流高速区的出口相对位置,当进气角大于0°时,冷却气体能有效阻隔高温流体使壁面Nu数降低;低导热系数材料降低了气流对固体壁面的对流换热,使得壁面的对流换热更加均匀.   相似文献   

19.
建筑热工性能评价和建筑节能越来越受到人们的重视,将建筑房间简化为含有多孔介质的双区域模型在更多的领域得到广泛应用。文章基于数值模拟的方法,探究了具有表面热辐射的部分填充多孔介质的复合腔体内湍流自然对流换热问题;建立并用有限元方法求解自由流体区域和多孔介质区域的动量和能量传递方程,对数学模型进行了比较验证,分析了Rayleigh数(湍流与层流)及发射率为ε_i对传热、流动的影响。结果表明,Rayleigh数对具有表面热辐射的部分填充多孔介质的复合腔体内的动量和热量传递有明显的影响,且决定自然对流强度大小。Rayleigh数越大,自然对流换热作用越强,腔体内的平均温度降低并逐渐趋于一致;表面热辐射影响对流作用,墙体壁面发射率为0.0~0.3时,自然对流的影响较大,随着发射率的增大,辐射作用明显增强,并在热量传递中占主导位置。  相似文献   

20.
文中引入广义模型与能量方程来分别描述多孔介质内部的动量和热量传递,建立了底部嵌入矩形热源的二维多孔介质内自然对流的格子-Boltzmann(Lattice Boltzmann, LB)模型.通过和实验结果进行对比,验证了文中LB模型求解多孔介质内嵌热源引起的对流换热问题的正确性.系统地研究了Rayleigh数(Ra)、Darcy数(Da)和孔隙率ε等参数对多孔介质内温度场和流场的影响规律.研究结果表明:当Ra>105时,Ra的增加能够提升多孔介质的整体对流换热强度;当Da>10-5时,Da的增加能有效改善多孔介质内的流动换热情况;孔隙率的增加能够强化流动换热,但不会改变多孔介质的主导换热类型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号