首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes an innovative optimization approach that offers significant improvements in performance over existing methods to solve shape optimization problems. The new approach is based on two-stages which are (1) Taguchi's robust design approach to find appropriate interval levels of design parameters (2) Immune algorithm to generate optimal solutions using refined intervals from the previous stage. A benchmark test problem is first used to illustrate the effectiveness and efficiency of the approach. Finally, it is applied to the shape design optimization of a vehicle component to illustrate how the present approach can be applied for solving shape design optimization problems. The results show that the proposed approach not only can find optimal but also can obtain both better and more robust results than the existing algorithm reported recently in the literature.  相似文献   

2.
This research is based on a new hybrid approach, which deals with the improvement of shape optimization process. The objective is to contribute to the development of more efficient shape optimization approaches in an integrated optimal topology and shape optimization area with the help of genetic algorithms and robustness issues. An improved genetic algorithm is introduced to solve multi-objective shape design optimization problems. The specific issue of this research is to overcome the limitations caused by larger population of solutions in the pure multi-objective genetic algorithm. The combination of genetic algorithm with robust parameter design through a smaller population of individuals results in a solution that leads to better parameter values for design optimization problems. The effectiveness of the proposed hybrid approach is illustrated and evaluated with test problems taken from literature. It is also shown that the proposed approach can be used as first stage in other multi-objective genetic algorithms to enhance the performance of genetic algorithms. Finally, the shape optimization of a vehicle component is presented to illustrate how the present approach can be applied for solving multi-objective shape design optimization problems.  相似文献   

3.
The purpose of this paper is to develop a novel hybrid optimization method (HRABC) based on artificial bee colony algorithm and Taguchi method. The proposed approach is applied to a structural design optimization of a vehicle component and a multi-tool milling optimization problem.A comparison of state-of-the-art optimization techniques for the design and manufacturing optimization problems is presented. The results have demonstrated the superiority of the HRABC over the other techniques like differential evolution algorithm, harmony search algorithm, particle swarm optimization algorithm, artificial immune algorithm, ant colony algorithm, hybrid robust genetic algorithm, scatter search algorithm, genetic algorithm in terms of convergence speed and efficiency by measuring the number of function evaluations required.  相似文献   

4.
This paper presents a new hybrid optimization approach based on immune algorithm and hill climbing local search algorithm. The purpose of the present research is to develop a new optimization approach for solving design and manufacturing optimization problems. This research is the first application of immune algorithm to the optimization of machining parameters in the literature. In order to evaluate the proposed optimization approach, single objective test problem, multi-objective I-beam and machine-tool optimization problems taken from the literature are solved. Finally, the hybrid approach is applied to a case study for milling operations to show its effectiveness in machining operations. The results of the hybrid approach for the case study are compared with those of genetic algorithm, the feasible direction method and handbook recommendation.  相似文献   

5.
Hybridizing of the optimization algorithms provides a scope to improve the searching abilities of the resulting method. The purpose of this paper is to develop a novel hybrid optimization algorithm entitled hybrid robust differential evolution (HRDE) by adding positive properties of the Taguchi's method to the differential evolution algorithm for minimizing the production cost associated with multi-pass turning problems. The proposed optimization approach is applied to two case studies for multi-pass turning operations to illustrate the effectiveness and robustness of the proposed algorithm in machining operations. The results reveal that the proposed hybrid algorithm is more effective than particle swarm optimization algorithm, immune algorithm, hybrid harmony search algorithm, hybrid genetic algorithm, scatter search algorithm, genetic algorithm and integration of simulated annealing and Hooke-Jeevespatter search.  相似文献   

6.
This paper introduces a new hybrid algorithmic nature inspired approach based on particle swarm optimization, for successfully solving one of the most popular supply chain management problems, the vehicle routing problem. The vehicle routing problem is considered one of the most well studied problems in operations research. The proposed algorithm for the solution of the vehicle routing problem, the hybrid particle swarm optimization (HybPSO), combines a particle swarm optimization (PSO) algorithm, the multiple phase neighborhood search–greedy randomized adaptive search procedure (MPNS–GRASP) algorithm, the expanding neighborhood search (ENS) strategy and a path relinking (PR) strategy. The algorithm is suitable for solving very large-scale vehicle routing problems as well as other, more difficult combinatorial optimization problems, within short computational time. It is tested on a set of benchmark instances and produced very satisfactory results. The algorithm is ranked in the fifth place among the 39 most known and effective algorithms in the literature and in the first place among all nature inspired methods that have ever been used for this set of instances.  相似文献   

7.
Mixed-integer optimization problems belong to the group of NP-hard combinatorial problems. Therefore, they are difficult to search for global optimal solutions. Mixed-integer optimization problems are always described by precise mathematical programming models. However, many practical mixed-integer optimization problems have inherited a more or less imprecise nature. Under these circumstances, if we take into account the flexibility of the constraints and the fuzziness of the objectives, the original mixed-integer optimization problems can be formulated as fuzzy mixed-integer optimization problems. Mixed-integer hybrid differential evolution (MIHDE) is an evolutionary search algorithm which has been successfully applied to many complex mixed-integer optimization problems. In this article, a fuzzy mixed-integer mathematical programming model is developed to formulate the fuzzy mixed-integer optimization problem. In addition the MIHDE is introduced to solve the fuzzy mixed-integer programming problem. Finally, the illustrative example shows that satisfactory results can be obtained by the proposed method. This demonstrates that MIHDE can effectively handle fuzzy mixed-integer optimization problems.  相似文献   

8.
This paper proposes a hybrid bat algorithm with natural-inspired algorithms for continuous optimization problem. In this study, the proposed algorithm combines the reproduction step from weed algorithm and genetic algorithm. The reproduction step is applied to clone each bat population by fitness values and the genetic algorithm is applied in order to expand the population. The algorithm is evaluated on eighteen benchmark problems. The computational results of the proposed algorithm are compared with the methods in the literature which are self-adaptive differential evolution (DE), traditional DE algorithm, intersection mutation differential evolution (IMDE) algorithm, and the JDE self-adaptive algorithm. Findings show that the algorithm produces several solutions obtained by the previously published methods especially for the continuous unimodal function, the quartic function, the multimodal function and the discontinuous step function. In addition, the finding shows that the proposed algorithm can produce optimal solutions efficiently on benchmark instances within short computational time.  相似文献   

9.
Multi-verse optimization algorithm (MVO) is one of the recent meta-heuristic optimization algorithms. The main inspiration of this algorithm came from multi-verse theory in physics. However, MVO like most optimization algorithms suffers from low convergence rate and entrapment in local optima. In this paper, a new chaotic multi-verse optimization algorithm (CMVO) is proposed to overcome these problems. The proposed CMVO is applied on 13 benchmark functions and 7 well-known design problems in the engineering and mechanical field; namely, three-bar trust, speed reduce design, pressure vessel problem, spring design, welded beam, rolling element-bearing and multiple disc clutch brake. In the current study, a modified feasible-based mechanism is employed to handle constraints. In this mechanism, four rules were used to handle the specific constraint problem through maintaining a balance between feasible and infeasible solutions. Moreover, 10 well-known chaotic maps are used to improve the performance of MVO. The experimental results showed that CMVO outperforms other meta-heuristic optimization algorithms on most of the optimization problems. Also, the results reveal that sine chaotic map is the most appropriate map to significantly boost MVO’s performance.  相似文献   

10.

The paper proposes a novel metaheuristic based on integrating chaotic maps into a Henry gas solubility optimization algorithm (HGSO). The new algorithm is named chaotic Henry gas solubility optimization (CHGSO). The hybridization is aimed at enhancement of the convergence rate of the original Henry gas solubility optimizer for solving real-life engineering optimization problems. This hybridization provides a problem-independent optimization algorithm. The CHGSO performance is evaluated using various conventional constrained optimization problems, e.g., a welded beam problem and a cantilever beam problem. The performance of the CHGSO is investigated using both the manufacturing and diaphragm spring design problems taken from the automotive industry. The results obtained from using CHGSO for solving the various constrained test problems are compared with a number of established and newly invented metaheuristics, including an artificial bee colony algorithm, an ant colony algorithm, a cuckoo search algorithm, a salp swarm optimization algorithm, a grasshopper optimization algorithm, a mine blast algorithm, an ant lion optimizer, a gravitational search algorithm, a multi-verse optimizer, a Harris hawks optimization algorithm, and the original Henry gas solubility optimization algorithm. The results indicate that with selecting an appropriate chaotic map, the CHGSO is a robust optimization approach for obtaining the optimal variables in mechanical design and manufacturing optimization problems.

  相似文献   

11.
This paper presents a novel memetic algorithm, named as IWO_DE, to tackle constrained numerical and engineering optimization problems. In the proposed method, invasive weed optimization (IWO), which possesses the characteristics of adaptation required in memetic algorithm, is firstly considered as a local refinement procedure to adaptively exploit local regions around solutions with high fitness. On the other hand, differential evolution (DE) is introduced as the global search model to explore more promising global area. To accommodate the hybrid method with the task of constrained optimization, an adaptive weighted sum fitness assignment and polynomial distribution are adopted for the reproduction and the local dispersal process of IWO, respectively. The efficiency and effectiveness of the proposed approach are tested on 13 well-known benchmark test functions. Besides, our proposed IWO_DE is applied to four well-known engineering optimization problems. Experimental results suggest that IWO_DE can successfully achieve optimal results and is very competitive compared with other state-of-art algorithms.  相似文献   

12.
Structural topology optimization using ant colony optimization algorithm   总被引:5,自引:0,他引:5  
The ant colony optimization (ACO) algorithm, a relatively recent bio-inspired approach to solve combinatorial optimization problems mimicking the behavior of real ant colonies, is applied to problems of continuum structural topology design. An overview of the ACO algorithm is first described. A discretized topology design representation and the method for mapping ant's trail into this representation are then detailed. Subsequently, a modified ACO algorithm with elitist ants, niche strategy and memory of multiple colonies is illustrated. Several well-studied examples from structural topology optimization problems of minimum weight and minimum compliance are used to demonstrate its efficiency and versatility. The results indicate the effectiveness of the proposed algorithm and its ability to find families of multi-modal optimal design.  相似文献   

13.

The dragonfly algorithm (DA) is a swarm-based stochastic algorithm which possesses static and dynamic behavior of swarm and is gaining meaningful popularity due to its low computational cost and fast convergence in solving complex optimization problems. However, it lacks internal memory and is thereby not able to keep track of its best solutions in previous generations. Furthermore, the solution also lacks in diversity and thereby has a propensity of getting trapped in the local optimal solution. In this paper, an iterative-level hybridization of dragonfly algorithm (DA) with differential evolution (DE) is proposed and named as hybrid memory-based dragonfly algorithm with differential evolution (DADE). The reason behind selecting DE is for its computational ability, fast convergence and capability in exploring the solution space through the use of crossover and mutation techniques. Unlike DA, in DADE the best solution in a particular iteration is stored in memory and proceeded with DE which enhances population diversity with improved mutation and accordingly increases the probability of reaching global optima efficiently. The efficiency of the proposed algorithm is measured based on its response to standard set of 74 benchmark functions including 23 standard mathematical benchmark functions, 6 composite benchmark function of CEC2005, 15 benchmark functions of CEC2015 and 30 benchmark function of CEC2017. The DADE algorithm is applied to engineering design problems such as welded beam deign, pressure vessel design, and tension/compression spring design. The algorithm is also applied to the emerging problem of secondary user throughput maximization in an energy-harvesting cognitive radio network. A comparative performance analysis between DADE and other most popular state-of-the-art optimization algorithms is carried out and significance of the results is deliberated. The result demonstrates significant improvement and prominent advantages of DADE compared to conventional DE, PSO and DA in terms of various performance measuring parameters. The results of the DADE algorithm applied on some important engineering design problems are encouraging and validate its appropriateness in the context of solving interesting practical engineering challenges. Lastly, the statistical analysis of the algorithm is also performed and is compared with other powerful optimization algorithms to establish its superiority.

  相似文献   

14.
结合基于可行性规则的约束处理技术,构造了一个求解约束优化问题的自适应杂交差分演化模拟退火算法。该算法以差分演化算法为基础,用模拟退火策略来增强种群的多样性,用一个基于可行性规则的约束处理技术来处理不等式约束,且自适应化关键控制参数,避开人为控制参数的困难。在标准测试集上的实验结果表明该算法的有效性,与同类算法的比较表明了该算法的优越性。  相似文献   

15.
This paper proposes a stepwise structural design methodology where the component layout and the supporting frame structure is sequentially found using global search algorithm and topology optimization. In the component layout design step, the genetic algorithm is used to handle system level multiobjective problem where the optimal locations of multiple components are searched. Based on the layout design searched, a new Topology Optimization method based on Morphing Mesh technique (TOMM) is applied to obtain the frame structure topology while adjusting the component locations simultaneously. TOMM is based on the SIMP method with morphable FE mesh, and component relocation and frame design is simultaneously done using two kinds of design variables: topology design variables and morphing design variables. Two examples are studied in this paper. First, TOMM method is applied to a simple cantilever beam problem to validate the proposed design methodology and justify inclusion of morphing design variables. Then the stepwise design methodology is applied to the commercial Boeing 757 aircraft wing design problem for the optimal placement of multiple components (subsystems) and the optimal supporting frame structure around them. Additional constraint on the weight balance is included and the corresponding design sensitivity is formulated. The benefit of using the global search algorithm (genetic algorithm) is discussed in terms of finding the global optimum and independency of initial design guess. It has been proved that the proposed stepwise method can provide innovative design insight for complex modern engineering systems with multi-component structures.  相似文献   

16.
求解约束优化问题的改进灰狼优化算法   总被引:3,自引:0,他引:3  
龙文  赵东泉  徐松金 《计算机应用》2015,35(9):2590-2595
针对基本灰狼优化(GWO)算法存在求解精度低、收敛速度慢、局部搜索能力差的问题,提出一种改进灰狼优化(IGWO)算法用于求解约束优化问题。该算法采用非固定多段映射罚函数法处理约束条件,将原约束优化问题转化为无约束优化问题,然后利用IGWO算法对转换后的无约束优化问题进行求解。在IGWO算法中,引入佳点集理论生成初始种群,为算法全局搜索奠定基础;为了提高局部搜索能力和加快收敛,对当前最优灰狼个体执行Powell局部搜索。采用几个标准约束优化测试问题进行仿真实验,结果表明该算法不仅克服了基本GWO的缺点,而且性能优于差分进化和粒子群优化算法。  相似文献   

17.
差分进化是一种求解连续优化问题的高效算法。然而差分进化算法求解大规模优化问题时,随着问题维数的增加,算法的性能下降,且搜索时间呈指数上升。针对此问题,本文提出了一种新的基于Spark的合作协同差分进化算法(SparkDECC)。SparkDECC采用分治策略,首先通过随机分组方法将高维优化问题分解成多个低维子问题,然后利用Spark的弹性分布式数据模型,对每个子问题并行求解,最后利用协同机制得到高维问题的完整解。通过在13个高维测试函数上进行的对比实验和分析,实验结果表明算法加速明显且可扩展性好,验证了SparkDECC的有效性和适用性。  相似文献   

18.
This paper investigates the operator allocation problems (OAP) with jobs sharing and operator revisiting for balance control of a complicated hybrid assembly line which appears in the apparel sewing manufacturing system. Multiple objectives and constraints for the problem are formulated. The utility function is employed to deal with the difficulty of combining several conflicting and incommensurable objectives into one overall measure. An optimization model combining the Pareto utility discrete differential evolution (PUDDE) algorithm and the embedded discrete event simulation (DES) model is proposed to solve the OAPs. The PUDDE algorithm is an improved discrete differential evolution approach used with the Pareto utility selection strategy, which extends the real-value differential evolution to handle the discrete-value vector by introducing two modified operators, namely the subtraction and addition operators. During the optimization process, the embedded DES model is used to evaluate the performance objectives by analyzing the dynamic behaviors of the hybrid assembly lines, which tackles the problem of having no closed-form mathematical expressions for the evaluation of performance objectives owing to the existence of jobs sharing and operator revisiting. Extensive experiments are conducted to validate the proposed optimization model. The experimental results demonstrate that the proposed PUDDE-based optimization model can effectively solve the OAPs for the hybrid assembly lines with the consideration of jobs sharing and operator revisiting. It was also found that the proposed PUDDE algorithm evidently outperforms the general differential evolution algorithm. Compared with the collected industrial results, the solution generated by the proposed optimization model has much better performance objectives for the hybrid assembly lines.  相似文献   

19.
The successful application of multiobjective optimization to engineering problems has motivated studies of more complex systems involving multiple subsystems and design disciplines, each with multiple design criteria. Complex system design requires participation of different teams that are highly specialized within each discipline and subsystem. Such a high differentiation results in limited sharing of information among the design teams. The mathematical modeling and the solution algorithm proposed in this paper address the issue of coordinating multiple design problems that negotiate according to conflicting criteria. The design of the layout of hybrid vehicles is formulated as a bilevel decomposed problem including a vehicle level and a battery level in concert with the specialization of the respective design teams required at each level. An iterative algorithm, the Multiobjective Decomposition Algorithm (MODA) is proposed, whose generated sequences are shown to converge to efficient designs for the overall design problem under certain conditions examined in the context of the block coordinate descent method and the method of multipliers. MODA applied to the hybrid electric design problem captures the bilevel tradeoffs originating by the conflicting objectives at the vehicle and battery levels.  相似文献   

20.
Wu  Dongmei  Pun  Chi-Man  Xu  Bin  Gao  Hao  Wu  Zhenghua 《Multimedia Tools and Applications》2020,79(21-22):14319-14339

In this paper, a multi-objective bird swarm algorithm (MOBSA) is proposed to cope with multi-objective optimization problems. The algorithm is explored based on BSA which is an evolutionary algorithm suitable for single objective optimization. In this paper, non-dominated sorting approach is used to distinguish optimal solutions and parallel coordinates is applied to evaluate the distribution density of non-dominated solution and further update the external archive when it is full to overflowing, which ensure faster convergence and more widespread of Pareto front. Then, the MOBSA is adopted to optimize benchmark problems. The results demonstrate that MOBSA gets better performance compared with NSGA-II and MOPSO. Since a vehicle power train problem could be treated as a typical multi-objective optimization problem with constraints, with integration of constrained non-dominated solution, MOBSA is adopted to acquire optimal gear ratios and optimize vehicle power train. The results compared with other popular algorithm prove the proposed algorithm is more suitable for constrained multi-objective optimization problem in engineering field.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号