首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intermolecular forces and morphology demonstrated that there was an excellent compatibility between silk fibroin and gelatin. The silk fibroin/gelatin composite vascular scaffold (inner diameter 4.5 mm) was prepared successfully by electrospinning. The scaffold was treated with ethanol to enhance the water-resistant ability and biomechanical properties. After ethanol treatment, the scaffold could hardly dissolve in the water, and FTIR showed that the conformation of the treated silk fibroin/gelatin composite vascular scaffold was mainly β-sheets. The electrospun silk fibroin/gelatin vascular scaffold possessed outstanding biomechanical properties. In vitro cell culture and in vivo subcutaneous implantation demonstrated that the electrospun silk fibroin/gelatin vascular scaffold had an appropriate biocompatibility. The results indicated that the electrospun silk fibroin/gelatin composite vascular scaffold could be considered as an ideal candidate for tissue-engineered blood vessel.  相似文献   

2.
To biomimic the spinning process of silkworm or spider, a capillary spinning equipment was applied to spin regenerated silk fibroin (RSF) fibers from RSF aqueous solutions in air. This equipment exhibits a wide processing window for various RSF aqueous solutions. The effects of pH, metal ions, RSF concentration and spinning parameters on the spinnability of the spinning dope and the mechanical properties of the obtained fibers were investigated. As a result, spinning dopes with a pH from 5.2 to 6.9 have good spinnability, especially for the dope with a pH of 6.0 and a Ca2+ concentration of 0.3 M. The RSF concentration of this dope ranges from 44% to 48%. Under optimized conditions of our dry spinning experiments (L/D, 133; take-up speed, 30 mm/s), the obtained as-spun fiber has a breaking strength of 46 MPa, which can be improved up to 359 MPa after a preliminary post-drawing in 80 vol.% ethanol aqueous solution.  相似文献   

3.
This work describes the preparation and characterization of porous 3D-scaffolds based on chitosan (CHI), chitosan/silk fibroin (CHI/SF) and chitosan/silk fibroin/hydroxyapatite (CHI/SF/HA) by freeze drying. The biomaterials were characterized by X-ray diffraction, attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy and energy dispersive spectroscopy. In addition, studies of porosity, pore size, contact angle and biological response of SaOs-2osteoblastic cells were performed. The CHI scaffolds have a porosity of 94.2 ± 0.9%, which is statistically higher than the one presented by CHI/SF/HA scaffolds, 89.7 ± 2.6%. Although all scaffolds were able to promote adhesion, growth and maintenance of osteogenic differentiation of SaOs-2 cells, the new 3D-scaffold based on CHI/SF/HA showed a significantly higher cell growth at 7 days and 21 days and the level of alkaline phosphatase at 14 and 21 days was statistically superior compared to other tested materials.  相似文献   

4.
An ideal scaffold in bone tissue-engineering strategy should provide biomimetic extracellular matrix-like architecture and biological properties. Poly(γ-benzyl-L-glutamate) (PBLG) has been a popular model polypeptide for various potential biomedical applications due to its good biocompatibility and biodegradability. This study developed novel bimodal porous PBLG polypeptide scaffolds via a combination of biotemplating method and in situ ring-opening polymerization of γ-benzyl-L-gIutamate N-carboxyanhydride (BLG-NCA). The PBLG scaffolds were characterized by proton nuclear magnetic resonance spectroscopy, X-ray diffraction, differential scanning calorimetry, scanning electron microscope (SEM) and mechanical test. The results showed that the semi-crystalline PBLG scaffolds exhibited an anisotropic porous structure composed of honeycomb-like channels (100–200 μm in diameter) and micropores (5–20 μm), with a very high porosity of 97.4 ± 1.6%. The compressive modulus and glass transition temperature were 402.8 ± 20.6 kPa and 20.2 °C, respectively. The in vitro biocompatibility evaluation with MC3T3-E1 cells using SEM, fluorescent staining and MTT assay revealed that the PBLG scaffolds had good biocompatibility and favored cell attachment, spread and proliferation. Therefore, the bimodal porous polypeptide scaffolds are promising for bone tissue engineering.  相似文献   

5.
Demand to develop a simple and adaptable method for preparation the hierarchical porous scaffolds for bone tissue regeneration is ever increasing. This study presents a novel and reproducible method for preparing the scaffolds with pores structure spanning from nano, micro to macro scale. A macroporous Sr-Hardystonite (Sr–Ca2ZnSi2O7, Sr–HT) scaffold with the average pore size of ~ 1200 μm and porosity of ~ 95% was prepared using polymer sponge method. The struts of the scaffold were coated with a viscous paste consisted of salt (NaCl) particles and polycaprolactone (PCL) to provide a layer with thickness of ~ 300–800 μm. A hierarchical porous scaffold was obtained with macro, micro and nanopores in the range of 400–900 μm, 1–120 μm and 40–290 nm, after salt leaching process. These scales could be easily adjusted based on the starting foam physical characteristics, salt particle size, viscosity of the paste and salt/PCL weight ratio.  相似文献   

6.
This study investigates the effect of print head design on the electrohydrodynamic printed resolution of silk fibroin. Needles with large orifices measuring at 800 μm were used to build five different print heads. The print heads were manufactured, tested, and optimized using four different silk fibroin solution concentrations of 10 wt.%, 15 wt.%, 20 wt.%, and 22 wt.% at applied voltages that ranged from 10 to 20 kV with two different flow rates of 1.5 μl/min and 2.0 μl/min. Each print head design behaved in a unique manner in terms of printed line characteristics as the flow rate, voltage and concentration were varied. The highest printed resolution of the order of 1 μm was achieved using the pinhole reservoir print head. Possible explanations for each of the observed behaviors and design criteria for future print heads are discussed.  相似文献   

7.
Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27–55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99 ± 2.51) %, (89.66 ± 0.66) % and (73.77 ± 3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24 ± 0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44 ± 1.81) × 10? 2 mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a promising technique for the development of new and improved tissue engineering scaffolds.  相似文献   

8.
Hydroxyapatite (HA) powder was prepared by wet chemical method. The hydroxyapatite phase was stable up to 1250 °C without decomposition to beta-tricalcium phosphate. Interconnected porous hydroxyapatite scaffold resembling trabecular bone structure was developed from polymeric replica sponge method. The prepared scaffold has 60 vol.% porosity having a major fraction of ~ 50–125 μm pore diameter. The pore content, pore morphology, pore interconnectivity of scaffold and their compressive strength were dependent on the solid loading and binder content. In-vitro bioactivity and bioresorbability confirmed the feasibility of the developed scaffolds.  相似文献   

9.
Porous silver scaffolds, with the porosity ranging from 68% to 81% and the apparent density ranging from 0.4 to 1 g?cm? 3 were prepared by electroplating method using cellular carbon skeleton as the substrate. The microstructure, mechanical property, cytotoxicity and antibacterial activity of the prepared porous silver scaffold were studied. The present porous silver scaffolds had a highly three-dimensional trabecular porous structure with the porosity and the apparent density close to that of the cancellous bone. Furthermore, the mechanical property such as elastic modulus and yield strength of the porous silver scaffolds were lower than that of commercial available porous Ti and porous Ti alloys but much closer to that of the cancellous bone and porous Ta. In addition, study of in vitro behavior showed that the porous silver scaffold possessed significant antibacterial capability of inhibition of bacterial proliferation and adherence against Staphylococcus aureus and Staphylococcus epidermidis, and little cytotoxicity to Mg-63 cell line and NIH-3T3 cell line. Consequently, the porous silver scaffolds prepared by electrodeposition possess a promising application for bone implants.  相似文献   

10.
In this paper, the feasibility of using Antheraea pernyi silk fibroin as tissue engineering tendon scaffold was investigated in vitro and in vivo, respectively, utilizing tenocytes and animal model. The animal model used here was an adult New Zealand White rabbit with a 15-mm gap defect in both sides of the Achilles tendon. The Achilles tendon defects in one side of hind legs were repaired using the braided A. pernyi silk fibroin scaffold in experimental group (n = 24), while the other side left untreated as negative group (n = 24). The recovery of the defect tendons were evaluated postoperatively at the 2nd, 6th, 12th, and 16th week using macroscopic, histological, immunohistochemical, scanning electron micrograph and biomechanical test techniques. In vitro results examined by scanning electron micrograph showed that A. pernyi silk fibroin promote the adhesion and propagation of the tenocytes. In vivo, at 16 weeks after implantation, morphological results showed that neo-tendons were formed, and bundles of collagen fibers in the neo-tendons were uniform and well oriented. Immunohistochemical results showed that collagen type in the regenerated tendons was predominantly type I. The maximum load of regenerated tendon at 16 weeks reached 55.46% of the normal tendon values. Preliminary, we concluded that A. pernyi silk fibroin promoted the recovery of Achilles tendon defect of rabbit and the application of A. pernyi silk fibroin as tissue engineering tendon scaffold is feasible.  相似文献   

11.
The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival.In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10–15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177–0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity (~ 70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold.  相似文献   

12.
Silk fibroin (SF) hydrogels were obtained from the dialysis of a SF metastable solution. Temperature and calcium concentration in SF solution/hydrogel were measured, as critical variables for SF gelation phenomenon. Gelation time of SF solution was increased by decreasing the dialysis temperature, whereas the residual calcium concentration was higher when higher dialysis temperatures were applied. Hydrogels obtained at 20 °C were characterized after freeze-drying. SEM micrographs showed porous structures, of ca. 20 μm (in cross-sectional area) and 5 μm (on surface). XRD indicated the presence of a β-sheet structure that is formed during SF gelation. In hydrogel formation, SF molecules in solution are dehydrated and interact by intra and intermolecular hydrogen bonds, forming a stable hydrogel. DSC measurements showed the decomposition peak for SF at 290 °C, characteristic of SF β-sheet structure, which is in accordance with the XRD results and demonstrate its high thermal resistance. SF hydrogels were found not to be toxic to cells using in vitro cytotoxicity tests. Results indicate that silk fibroin hydrogels hold promise for use in the biomaterial field.  相似文献   

13.
Composite scaffolds of silk fibroin (SF) with bioactive wollastonite were prepared by freeze-drying. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy analysis showed that random coil and β-sheet structure co-existed in the SF scaffold. The mechanical performance, surface hydrophilicity and water-uptake capacity of the composite scaffolds were improved compared with those of pure SF scaffold. The bioactivity of the composite scaffold was evaluated by soaking in a simulated body fluid (SBF), and formation of a hydroxycarbonate apatite (HCA) layer was determined by FT-IR and XRD. The results showed that the SF/wollastonite composite scaffold was bioactive as it induced the formation of HCA on the surface of the composite scaffold after soaking in SBF for 5 days. In vitro cell attachment and proliferation tests showed that the composite scaffold was a good matrix for the growth of L929 mouse fibroblast cells. Consequently, the incorporation of wollastonite into the SF scaffold can enhance both the mechanical strength and bioactivity of the scaffold, which suggests that the SF/wollastonite composite scaffold may be a potential biomaterial for tissue engineering.  相似文献   

14.
Tissue engineering requires the development of three-dimensional water-stable scaffolds. In this study, silk fibroin/chitosan (SFCS) scaffold was successfully prepared by freeze-drying method. The scaffold is water-stable, only swelling to a limited extent depending on its composition. Fourier Transform Infrared (FTIR) spectra and X-Ray diffraction curves confirmed the different structure of SFCS scaffolds from both chitosan and silk fibroin. The homogeneous porous structure, together with nano-scale compatibility of the two naturally derived polymers, gives rise to the controllable mechanical properties of SFCS scaffolds. By varying the composition, both the compressive modulus and compressive strength of SFCS scaffolds can be controlled. The porosity of SFCS scaffolds is above 95% when the total concentration of silk fibroin and chitosan is below 6 wt%. The pore sizes of the SFCS scaffolds range from 100 μm to 150 μm, which can be regulated by changing the total concentration. MTT assay showed that SFCS scaffolds can promote the proliferation of HepG2 cells (human hepatoma cell line) significantly. All these results make SFCS scaffold a suitable candidate for tissue engineering.  相似文献   

15.
The feasibility of rat acellular spinal cord scaffolds for tissue engineering applications was investigated. Fresh rat spinal cords were decellularized and crosslinked with genipin (GP) to improve their structural stability and mechanical properties. The GP-crosslinked spinal cord scaffolds possessed a porous structure with an average pore diameter of 31.1 μm and a porosity of 81.5%. The resultant scaffolds exhibited a water uptake ratio of 229%, and moderate in vitro degradation rates of less than 5% in phosphate-buffered saline (PBS) and slightly more than 20% in trypsin-containing buffer, within 14 days. The ultimate tensile strength and elastic modulus of GP-crosslinked spinal cord scaffolds were determined to be 0.193 ± 0.064 MPa and 1.541 ± 0.082 MPa, respectively. Compared with glutaraldehyde (GA)-crosslinked acellular spinal cord scaffolds, GP-crosslinked scaffolds demonstrated similar microstructure and mechanical properties but superior biocompatibility as indicated by cytotoxicity evaluation and rat mesenchymal stem cell (MSC) adhesion behavior. Cells were able to penetrate throughout the crosslinked scaffold due to the presence of an interconnected porous structure. The low cytotoxicity of GP facilitated cell proliferation and extracellular matrix (ECM) secretion in vitro on the crosslinked scaffolds over 7 days. Thus, these GP-crosslinked spinal cord scaffolds show great promise for tissue engineering applications.  相似文献   

16.
Developing materials combining the advantages of synthetic polymers and bioactive glass nanoparticles can provide an efficient bone engineering scaffold. In this study, sol–gel bioactive glass (SG) nanoparticles were synthesized by quick alkali-mediation; sol–gel derived bioactive glass/poly(l-lactide) nanocomposite scaffolds were then developed. The influence of the glass content on the porosity of nanocomposite scaffolds was evaluated by SEM. The results showed that the neat polymer scaffold (PLA) has a highly interconnected porous structure with a maximum pore size of about 250 μm. For the composite scaffold containing 25 wt.% glass (SGP25), the decrease in the maximum pore size, (to about 200 μm) was not significant while for the SGP50 composite scaffold containing 50 wt.% glass it was a significant decrease (to about 100 μm). The apparent porosity of the scaffolds was 56.56% ± 7.15, 54.14% ± 3.84, and 53.11% ± 3.99 for PLA, SGP25, and, SGP50 respectively. FT-IR, TGA, and XRD results revealed some interaction of the glass filler with the polymeric matrix in the scaffolds. The degradation study showed that, by increasing the glass content in the scaffolds, the water absorption decreased, the weight loss increased, and the cumulative ion concentrations released from them also increased. This indicates the possibility of modulating the degradation rate by varying the glass/polymer ratio. At the end of the incubation period, the weight losses were around 5.44% ± 0.96, 32.50% ± 2.73, and 41.47% ± 3.02 for the PLA, SGP25, and SGP50, respectively. Moreover, the water uptake reached 119.65% ± 18.88 and 93.39% ± 13.01 for SGP25 and SGP50, respectively. The addition of the SG to the scaffolds was found to enhance their in vitro bioactivity. Therefore, these nanocomposite scaffolds have a potential to be applied in bone engineering. All data are expressed as mean ± standard deviation (n = 3).  相似文献   

17.
The cytocompatibility, in vivo biodegradation and wound healing of keratin biomaterials were investigated. For the purposes, three groups of keratin scaffolds were fabricated by freeze-drying reduced solutions at 2 wt.%, 4 wt.% and 8 wt.% keratins extracted from human hairs. These scaffolds exhibited evenly distributed high porous structures with pore size of 120–220 μm and the porosity > 90%. NIH3T3 cells proliferated well on these scaffolds in culture lasting up to 22 days. Confocal micrographs stained with AO visually revealed cell attachment and infiltration as well as scaffold architectural stability. In vivo animal experiments were conducted with 4 wt.% keratin scaffolds. Early degradation of subcutaneously implanted scaffolds occurred at 3 weeks in the outermost surface, in concomitant with inflammatory response. At 5 weeks, the overall porous structure of scaffolds severely deteriorated while the early inflammatory response in the outermost surface obviously subsided. A faster keratin biodegradation was observed in repairing full-thickness skin defects. Compared with the blank control, keratin scaffolds gave rise to more blood vessels at 2 weeks and better complete wound repair at 3 weeks with a thicker epidermis, less contraction and newly formed hair follicles. These preliminary results suggest that human hair keratin scaffolds are promising dermal substitutes for skin regeneration.  相似文献   

18.
Hydroxyapatite (HAp) powder was prepared from CaNO3·4H2O and (NH4)2HPO4 by wet-chemical method and has phase stable up to 1250 °C. High strength macroporous HAp–naphthalene (HN) and HAp–naphthalene–benzene (HNB) scaffolds were fabricated by adapting sintering method. The resulting HAp scaffolds have porosity about 60 vol.% with compressive strength of ~ 11 MPa and average pore diameter in the range of ~ 125 μm. The incorporation of benzene in HN scaffold reduces the strength whereas enhanced both the porosity and pore size distribution. XRD, FTIR, SEM and mercury porosimeter techniques were used to study the phase purity, morphology, pore size and pore size distribution of scaffold. The study compared the effect of concentration of naphthalene on strength, porosity and pore size distribution on both HN and HNB scaffold. In-vitro bioactivity studies on HN and HNB scaffolds show the nucleation of spherical carbonated apatite particles on the surface in SBF solution.  相似文献   

19.
Three dimensional (3D) biodegradable porous scaffolds play a key role in cartilage tissue repair. Freeze-drying and cross-linking techniques were used to fabricate a 3D composite scaffold that combined the excellent biological characteristics of human-like collagen (HLC) and the outstanding mechanical properties of nano-hydroxyapatite (nHA). The scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and compression tests, using Relive® Artificial Bone (RAB) scaffolds as a control. HLC/nHA scaffolds displayed homogeneous interconnected macroporous structure and could withstand a compression stress of 2.67 ± 0.37 MPa, which was higher than that of the control group. Rabbit chondrocytes were seeded on the composite porous scaffolds and cultured for 21 days. Cell/scaffold constructs were examined using SEM, histological procedures, and biochemical assays for cell proliferation and the production of glycosaminoglycans (GAGs). The results indicated that HLC/nHA porous scaffolds were capable of encouraging cell adhesion, homogeneous distribution and abundant GAG synthesis, and maintaining natural chondrocyte morphology compared to RAB scaffolds. In conclusion, the presented data warrants the further exploration of HLC/nHA scaffolds as a potential biomimetic platform for chondrocytes in cartilage tissue engineering.  相似文献   

20.
A small-diameter vascular graft (inner diameter 4 mm) was fabricated from polyurethane (PU) and poly(ethylene glycol) (PEG) solutions by blend electrospinning technology. The fiber diameter decreased from 1023 ± 185 nm to 394 ± 106 nm with the increasing content of PEG in electrospinning solutions. The hybrid PU/PEG scaffolds showed randomly nanofibrous morphology, high porosity and well-interconnected porous structure. The hydrophilicity of these scaffolds had been improved significantly with the increasing contents of PEG. The mechanical properties of electrospun hybrid PU/PEG scaffolds were obviously different from that of PU scaffold, which was caused by plasticizing or hardening effect imparted by PEG composition. Under hydrated state, the hybrid PU/PEG scaffolds demonstrated low mechanical performance due to the hydrophilic property of materials. Compared with dry PU/PEG scaffolds with the same content of PEG, the tensile strength and elastic modulus of hydrated PU/PEG scaffolds decreased significantly, while the elongation at break increased. The hybrid PU/PEG scaffolds demonstrated a lower possibility of thrombi formation than blank PU scaffold in platelet adhesion test. The hemolysis assay illustrated that all scaffolds could act as blood contacting materials. To investigate further in vitro cytocompatibility, HUVECs were seeded on the scaffolds and cultured over 14 days. The cells could attach and proliferate well on the hybrid scaffolds than blank PU scaffold, and form a cell monolayer fully covering on the PU/PEG (80/20) hybrid scaffold surface. The results demonstrated that the electrospun hybrid PU/PEG tubular scaffolds possessed the special capacity with excellent hemocompatibility while simultaneously supporting extensive endothelialization with the 20 and 30% content of PEG in hybrid scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号