首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study aimed to develop a green process for biosynthesis of silver nanomaterials by some Egyptian bacterial isolates. This target was achieved by screening an in-house culture collection consists of 300 bacterial isolates for silver nanoparticle formation. Through screening process, it was observed that strains belonging to Escherichia coli (S30, S78), Bacillus megaterium (S52), Acinetobacter sp. (S7) and Stenotrophomonas maltophilia (S54) were potential candidates for synthesis of silver nanoparticles. The extracellular production of silver nanoparticles by positive isolates was investigated by UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results demonstrated that UV-visible spectrum of the aqueous medium containing silver ion showed a peak at 420 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy micrograph showed formation of silver nanoparticles in the range of 15-50 nm. XRD-spectrum of the silver nanoparticles exhibited 2θ values corresponding to the silver nanocrystal that produce in hexagonal and cubic crystal configurations with different plane of orientation. In addition, the signals of the silver atoms were observed by EDS-spectrum analysis that confirms the presence of silver nanoparticles (AgNPs) in all positive bacterial isolates.  相似文献   

2.
采用液相化学还原法合成了Ag/壳聚糖(CS)复合胶乳, 并制备了 Ag/CS-g-甲基丙烯酸甲酯(MMA)复合物。研究结果表明, 纳米Ag粒子对CS与MMA的接枝聚合起阻碍作用, 导致接枝率和接枝效率比无Ag粒子存在时有所下降。结构表征显示纳米Ag粒子均匀分散于复合物中。抗菌评价结果表明: Ag/CS和 Ag/CS-g-MMA 复合抗菌剂具有比Ag或CS单一抗菌剂更高效的抗菌性能, Ag/CS-g-MMA 复合物对E.coli、 B.subtilis、 S.aureus和P.aeruginosa四种菌的抑菌率分别为96.3%、 97.6%、 93.2%、 95.8%; Ag/CS-g-MMA复合抗菌剂的抗菌性能是纳米Ag粒子与CS协同作用的结果。   相似文献   

3.
采用两步法的简单路线制备出银纳米粒子包覆的聚苯乙烯(PS)微球,首先通过乳液聚合法合成出聚苯乙烯微球;然后对苯乙烯进行敏化和活化,搅拌下加入银的还原液,从而制备出Ag-PS核壳结构的纳米微球.同时借助于TEM、UV-vis、 FE-SEM进行表征,分析其微观结构.结果表明,所得的聚苯乙烯微球粒径约为40nm;聚苯乙烯/银核壳结构纳米微球粒径为45~350nm,银层厚度可随意调控.  相似文献   

4.
Hemp fibre was treated using a chelator (ethylene diamine tetra methylene phosphonic acid pentasodium salt) and white rot fungi Schizophyllum commune (S.com) with the purpose of improving its interfacial bonding with a polypropylene matrix. Composites were produced by film-stacking long fibre, oriented by carding, with polypropylene (PP) and maleated polypropylene (MAPP) coupling agent. The fibre and composite densities, composite fibre and void contents, as well as fibre and composite tensile strength were analysed. Tensile strength of treated fibre composites was higher than that for untreated fibre composites, despite fibre strength reducing with treatments. This supports that interfacial bonding between hemp and PP was improved by treatment. This trend was also obtained using a modification of the simple “rule of mixtures” model taking account of voids, suggesting that this could be an appropriate means of simply modelling interfacial modification.  相似文献   

5.
Metallic nanoparticles can be synthesised in living plants, which provide a friendly approach. In this work, the authors aimed to study the synthesis of silver nanoparticles (AgNPs) in Arabidopsis and the two‐dimensional (2D) distribution of Ag and other elements (Ca, P, S, Mg, and CI) in the Arabidopsis plant tissues. The concentrations of Ag in the plant tissues were determined by inductively coupled plasma‐atomic emission spectrometer, showing that the majority of Ag was retained in the roots. Transmission electron micrographs showed the morphology of AgNPs and the location in plant cells. The distributions of Cl and Ag were consistent in plant tissues by 2D proton‐induced X‐ray emission. In conclusion, this is the first report of the AgNP synthesis in Arabidopsis living plants and its 2D distribution of important elements, which provide a new clue for further research.Inspec keywords: silver, botany, atomic emission spectroscopy, antibacterial activity, nanoparticles, nanofabrication, transmission electron microscopy, chlorine, calcium, sulphur, phosphorusOther keywords: biosynthesis, two‐dimensional element distribution, metallic nanoparticles, silver nanoparticles, Arabidopsis plant tissues, inductively coupled plasma‐atomic emission spectrometry, transmission electron micrography, plant cells, 2D proton‐induced X‐ray emission, Arabidopsis living plants, Ag, Cl, Ca, P, S, Mg  相似文献   

6.
Short untreated and white rot fungi treated hemp fibre, polypropylene (PP) and maleated polypropylene (MAPP) coupling agent were extruded and injection moulded into composite tensile test specimens. The tensile properties of untreated and treated fibre and their composites were measured. The fibre length distributions in the composite were obtained by dissolving the PP/MAPP matrix in boiling xylene to extract the fibre. Both the Single Fibre Pull-Out test and the Bowyer and Bader model were used to determine the interfacial shear strength (IFSS) of these composites. IFSS was found to be lower for the Single Fibre Pull-Out test, which was considered to be largely due to axial loading of fibre and the resulting Poisson’s contraction occurring during this technique. This suggests that the Bowyer and Bader model provides a more relevant value of IFSS for composites. The results obtained from both methods showed that IFSS of the treated fibre composites was higher than that for untreated fibre composites. This supports that the hemp fibre interfacial bonding with PP was improved by white rot fungi treatment.  相似文献   

7.
The influences of annealing effects have been explored on the crystallinity, morphology, optical and magnetic properties of Ag–ZnO nanostructures prepared by a simple sol–gel method. X-ray powder diffraction, scanning electron microscope, high resolution transmission electron microscope (HRTEM), vibrating sample magnetometer and photoluminescence spectroscopy (PL) have been used to characterize the crystal structures, surface morphology, magnetic and optical properties of the pure ZnO and Ag–ZnO nanostructures respectively. The synthesized Ag–ZnO nanostructures are found to have hexagonal wurtzite crystal structures and their grain size increases while lattice strain decreases on annealing. From HRTEM observation, it is found that the annealed samples show nanorod like structures with Ag nanoparticles (NPs) embedded on the surface. Due to annealing effect, Ag–ZnO shows higher saturation magnetization at room temperature.  相似文献   

8.
Crystallized and spherical-shaped Au and Au–Ag alloy nanoparticles have been synthesized and stabilized using a fungus, F . semitectum in an aqueous system. Aqueous solutions of chloroaurate ions for Au and chloroaurate and Ag+ ions (1 : 1 ratio) for Au–Ag alloy were treated with an extracellular filtrate of F . semitectum biomass for the formation of Au nanoparticles (AuNP) and Au–Ag alloy nanoparticles (Au–AgNP). Analysis of the feasibility of the biosynthesized nanoparticles and core–shell alloy nanoparticles from fungal strains is particularly significant. The resultant colloidal suspensions are highly stable for many weeks. The obtained Au and Au–Ag alloy nanoparticles were characterized by the surface plasmon resonance (SPR) peaks using a UV-vis spectrophotometer, and the structure, morphology and size were determined by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Possible optoelectronics and medical applications of these nanoparticles are envisaged.  相似文献   

9.
Ag nanoparticles have been synthesized successfully by using plasmid DNA as templates based on photoinduced method at room temperature. The plasmid DNA with an average size of 3980 base pairs was separated from Bacillus by using molecular biology methods. The morphology and composition of the samples were characterized by Transmission electron microscopy (TEM) and Energy dispersive spectroscopy (EDS). The UV-vis spectrum was applied to study the different stages of the synthesis processes. The results showed that the Ag was successfully deposited on the surface of plasmid DNA and formed the Ag nanoparticles with average sizes of ~ 30 nm. It was suggested that this high efficiency approach has promising application for the synthesis of other metal or alloy nanoparticles.  相似文献   

10.
Nanocrystalline Zn1−x Ni x O (x = 0.00, 0.02, 0.04, 0.06, 0.08) powders were synthesized by a simple sol–gel autocombustion method using metal nitrates of zinc, nickel and glycine. Structural and optical properties of the Ni-doped ZnO samples annealed at 800 °C are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis using X-rays (EDAX), UV–visible spectroscopy and photoluminescence (PL). X-ray diffraction analysis reveals that the Ni-doped ZnO crystallizes in a hexagonal wurtzite structure and secondary phase (NiO) was observed with the sensitivity of XRD measurement with the increasing nickel concentration (x ≥ 0.04). The lattice constants of Ni-doped ZnO nanoparticles increase slightly when Ni2+ is doped into ZnO lattice. The optical absorption band edge of the nickel doped samples was observed above 387 nm (3.20 eV) along with well-defined absorbance peaks at around 439 (2.82 eV), 615(2.01 eV) and 655 nm (1.89 eV). PL measurements of Ni-doped samples illustrated the strong UV emission band at ~3.02 eV, weak blue emission bands at 2.82 and 2.75 eV, and a strong green emission band at 2.26 eV. The observed red shift in the band gap from UV–visible analysis and near band edge UV emission with Ni doping may be considered to be related to the incorporation of Ni ions into the Zn site of the ZnO lattice.  相似文献   

11.
Synthesis of nanoparticles with interesting physico-chemical properties using efficient as well as eco-friendly technology is one of the main objectives of nanotechnology. Biological systems have been reported to synthesize inorganic materials under certain circumstances. Exploiting the biosynthetic potential of different organisms, nanoparticles of varying morphologies and sizes have been synthesized. Among the nanomaterials, gold has received considerable attention owing to its varied applications in the fields of nano-medicine, catalysis, electronics, and optics. This review gives an account on the biosynthesis of gold nanoparticles from microorganisms, plants, and other biological sources, with particular emphasis on the probable mechanisms leading to the formation of gold nanoparticles and the extent of control over nanoparticle properties that has been achieved so far in the biosynthetic protocols. It has been speculated that enzymes and/or proteins secreted by the organisms are involved in the bio-reduction and stabilization of the nanoparticles. The biosynthetic procedures could compete with existing solvent-based chemical synthetic procedures in order to achieve stable and monodisperse gold nanoparticles in large scale.  相似文献   

12.
《Materials Letters》2007,61(23-24):4528-4530
Ag/polypyrrole nanocomposites were successfully synthesized via in situ chemical oxidation polymerization of pyrrole based on mercaptocarboxylic acid capped Ag nanoparticles colloid. Scanning electron microscopy (SEM) measurement showed that the obtained Ag/polypyrrole nanocomposites were spherical. Transmission electron microscopy (TEM) measurement showed that the Ag nanoparticles were inside the polypyrrole particles and had a little aggregation. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra were used to characterize the structure of the obtained Ag/polypyrrole nanocomposites. A possible formation mechanism of the Ag/polyrrole nanocomposites was also proposed.  相似文献   

13.
A series of poly(N,N-dimethylacrylamide)-g-poly(vinyl alcohol) (PDMAA-g-PVA) graft hydrogel networks were designed and prepared via a free radical polymerization route initiated by a PVA-(NH4)2Ce(NO3)6 redox reaction. Silver nanoparticles with high stability and good distribution behavior have been self-assembled by using these hydrogel networks as a nanoreactor and in situ reducing system. Meanwhile the PDMAA or PVA chains can efficiently act as stabilizing agents for the Ag nanoparticles in that Ag+ would form complex via oxygen atom and nitrogen atom, and form weak coordination bonds, thus astricting Ag+. The structure of the PDMAA-g-PVA/Ag was characterized by a Fourier transform infrared spectroscope (FTIR). The morphologies of pure PDMAA-g-PVA hydrogels and PDMAA-g-PVA/Ag nanocomposite ones were observed by a scanning electron microscopy (SEM) and transmission electron microscope (TEM). TEM micrographs revealed the presence of nearly spherical and well-separated Ag nanoparticles with diameters ranging from 10 to 20 nm, depending on their reduction routes. XRD results showed all relevant Bragg's reflection for crystal structure of Ag nanoparticles. UV–vis studies apparently showed the characteristic surface plasmon band at 410–440 nm for the existence of Ag nanoparticles within the hydrogel matrix. The swelling kinetics demonstrated that the transport mechanism belongs to non-Fickian mode for the PDMAA-g-PVA hydrogels and PDMAA-g-PVA/Ag nanocomposite ones. With increasing the DMAA proportion, the r0 and S are enhanced for each system. The assembly of Ag nanoparticles and the swelling behavior may be controlled and modulated by means of the compositional ratios of PVA to DMAA and reduction systems.  相似文献   

14.
Ag/polyaniline core-shell nanocomposites were successfully synthesized via in situ chemical oxidation polymerization of aniline based on mercaptocarboxylic acid capped Ag nanoparticles colloid. The morphology and structure of the products were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and UV-Vis spectra. A possible formation mechanism of the Ag/polyaniline core-shell nanocomposites was also proposed.  相似文献   

15.
Journal of Materials Science: Materials in Electronics - The presence of composite in the nanofluid resultant is essential to provide a significant methylene blue (MB) removal property in...  相似文献   

16.
Silver phosphate nanoparticles were biologically synthesised, for the first time, using a dilute silver nitrate solution as the silver ion supplier, and without any source of phosphate ion. The applied bacterium was Sporosarcina pasteurii formerly known as Bacillus pasteurii which is capable of solubilising phosphate from soils. It was speculated that the microbe accumulated phosphate from the organic source during the growth period, and then released it to deionised water. According to the transmission electron microscopy images and X‐ray diffraction results, the produced nanoparticles were around 20 nm in size and identified as silver phosphate nanocrystals. The outcomes were also approved by energy‐dispersive X‐ray analysis, thermogravimetric and differential scanning calorimetry analyses, ultraviolet–visible spectroscopy, and Fourier transform infrared spectroscopy analysis. Finally, the antibacterial effect of the obtained nanoparticles was verified by testing them against Bacillus cereus, Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium. The activity of silver phosphate nanoparticles against gram‐negative strains was better than the gram positives. It should be mentioned that the concentrations of 500 and 1000 mg/l were found to be strongly inhibitory for all of the strains.Inspec keywords: nanoparticles, silver compounds, nanofabrication, microorganisms, antibacterial activity, transmission electron microscopy, X‐ray diffraction, X‐ray chemical analysis, differential scanning calorimetry, ultraviolet spectra, visible spectra, Fourier transform infrared spectraOther keywords: biosynthesis, phosphate source, phosphorus mineralising bacterium, silver phosphate nanoparticles, Sporosarcina pasteurii, Bacillus pasteurii, deionised water, transmission electron microscopy images, X‐ray diffraction, energy‐dispersive X‐ray analysis, thermogravimetric analyses, differential scanning calorimetry analyses, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, antibacterial effect, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Ag3 PO4   相似文献   

17.
Ghilane J  Fan FR  Bard AJ  Dunwoody N 《Nano letters》2007,7(5):1406-1412
We report in this paper a facile approach for the formation and electrochemical characterization of silver-silver oxide core-shell nanoparticles (NPs). Thus, thermal treatment at temperatures between 200 and 360 degrees C of Ag NP, in the gas phase or in an organic solvent, has been used to achieve the formation Ag@Ag2O NP. The evidence of formation of such a core-shell structure was obtained by cyclic voltammetry using a Nafion modified electrode (where Nafion containing carbon particles is used as the matrix to encapsulate the core-shell NP). Initial positive scans measure free Ag. Initial negative scans measure Ag2O, with the following positive scan, compared to the initial one, providing a measure of "trapped" or core Ag. The results presented demonstrate the utility of this approach in characterizing core-shell structures, like Ag@Ag2O, which could be extended to other core-shell forms, such as bimetallic core-shell NP.  相似文献   

18.
19.
Rout CS  Kumar A  Fisher TS 《Nanotechnology》2011,22(39):395704
We report surface-enhanced Raman scattering (SERS) from Ag nanoparticles decorated on thin carbon nanowalls (CNWs) grown by microwave plasma chemical vapor deposition. The Ag morphology is controlled by exposing the CNWs to oxygen plasma and through the electrodeposition process by varying the number of deposition cycles. The SERS substrates are capable of detecting low concentrations of rhodamine 6G and bovine serum albumin, showing much higher Raman enhancement than ordinary planar HOPG with Ag decoration. The major factors contributing to this behavior include: high density of Ag nanoparticles, large surface area, high surface roughness, and the underlying presence of vertically oriented CNWs. The relatively simple procedure of substrate preparation and nanoparticle decoration suggests that this is a promising approach for fabricating ultrasensitive SERS substrates for biological and chemical detection at the single-molecule level, while also enabling the study of fundamental SERS phenomena.  相似文献   

20.
Journal of Materials Science: Materials in Electronics - In the present study, a facile and eco-friendly method was used for the preparation of Ag nanoparticles (NPs) by simultaneous bio-reduction...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号