首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic activity of Pt on alumina catalysts, with and without MnOx incorporated to the catalyst formulation, for CO oxidation in H2-free as well as in H2-rich stream (PROX) has been studied in the temperature range of 25–250 °C. The effect of catalyst preparation (by successive impregnation or by co-impregnation of Mn and Pt) and Mn content in the catalyst performance has been studied. A low Mn content (2 wt.%) has been found not to improve the catalyst activity compared to the base catalyst. However, catalysts prepared by successive impregnation with 8 and 15 wt.% Mn have shown a lower operation temperature for maximum CO conversion than the base catalyst with an enhanced catalyst activity at low temperatures with respect to Pt/Al2O3. A maximum CO conversion of 89.8%, with selectivity of 44.9% and CO yield of 40.3% could be reached over a catalyst with 15 wt.% Mn operating at 139 °C and λ = 2. The effect of the presence of 5 vol.% CO2 and 5 vol.% H2O in the feedstream on catalysts performance has also been studied and discussed. The presence of CO2 in the feedstream enhances the catalytic performance of all the studied catalysts at high temperature, whereas the presence of steam inhibits catalysts with higher MnOx content.  相似文献   

2.
A new NOx storage-reduction electrochemical catalyst has been prepared from a polycrystalline Pt film deposited on 8 mol% Y2O3-stabilized ZrO2 (YSZ) solid electrolyte. BaO has been added onto the Pt film by impregnation method. The NOx storage capacity of Pt-BaO/YSZ system was investigated at 350 °C and 400 °C under lean conditions. Results have shown that the electrochemical catalyst was effective for NOx storage. When nitric oxides are fully stored, the catalyst potential is high and reaches its maximum. On the other hand, when a part of NO and also NO2 desorb to the gas phase, the catalyst potential remarkably drops and finally stabilizes when no more NOx storage occurs but only the reaction of NO oxidation into NO2. Furthermore, the investigation has clearly demonstrated that the catalyst potential variation versus temperature or chemical composition is an effective indicator for in situ following the NOx storage-reduction process, i.e. the storage as well as the regeneration phase. The catalyst potential variations during NOx storage process was explained in terms of oxygen coverage modifications on the Pt.  相似文献   

3.
MnOx–CeO2 mixed oxides with a Mn/(Mn + Ce) molar ratios of 0–1 were prepared by a modified coprecipitation method and investigated for the complete oxidation of formaldehyde. The MnOx–CeO2 with Mn/(Mn + Ce) molar ratio of 0.5 exhibited the highest catalytic activity among the MnOx–CeO2 mixed oxides. Structure analysis by X-ray powder diffraction and temperature-programmed reduction of hydrogen revealed that the formation of MnOx–CeO2 solid solution greatly improved the low-temperature reducibility, resulting in a higher catalytic activity for the oxidation of formaldehyde. Promoting effect of Pt on the MnOx–CeO2 mixed oxide indicated that both the Pt precursors and the reduction temperature greatly affected the catalytic performance. Pt/MnOx–CeO2 catalyst prepared from chlorine-free precursor showed extremely high activity and stability after pretreatment with hydrogen at 473 K. 100% conversion of formaldehyde was achieved at ambient temperature and no deactivation was observed for 120 h time-on-stream. The promoting effect of Pt was ascribed to enhance the effective activation of oxygen molecule on the MnOx–CeO2 support.  相似文献   

4.
A highly dispersed Pt/Al2O3 catalyst was used for the selective catalytic reduction of NOx using propene (HC-SCR). Contact with the reaction gas mixture led to a significant activation of the catalyst at temperatures above 523 K. According to CO chemisorption data and HRTEM analysis, Pt particles on the activated catalyst had sintered. The redox behavior of the fresh and sintered catalysts was investigated using Multitrack, a TAP-like pulse reactor. If Pt particles on the catalyst are highly dispersed (average size below 2 nm), only a small part (10%) of the total number of Pt surface sites as determined by CO chemisorption (Ptsurf) participates in H2/O2 redox cycles (Ptsurf,redox) in Multitrack conditions. For a sintered catalyst, with an average particle size of 2.7 nm, the number of Ptsurf and Ptsurf,redox sites are in good agreement. Similar results were obtained for both catalysts using NO as the oxidant. The low number of Ptsurf,redox sites on highly dispersed Pt/Al2O3 is explained by the presence of a kinetically more stable—probably ionic—form of Pt---O bonds on all surface sites of the smaller Pt particles, including corner, edge and terrace sites. When the average particle size shifts to 2.7 nm, the kinetic stability of all Pt---O bonds is collectively decreased, enabling the participation of all Pt surface sites in the redox cycles.

A linear correlation between the NOx conversion in HC-SCR, and the amount of Ptsurf,redox was found. This suggests that redox-active Pt sites are necessary for catalytic activity. In addition, the correlation could be significantly improved by assuming that Ptsurf,terrace sites of the particles larger than 2.7 nm are mainly responsible for HC-SCR activity in steady state conditions. Implications of these results for the pathway of HC-SCR over Pt catalysts are discussed.  相似文献   


5.
Differences in the NOx storage-reduction (NSR) behavior of Pt/Ba/CeO2 and Pt/Ba/Al2O3 have been identified and traced to their different chemical and structural properties. The results show that Pt/Ba/CeO2 exhibits inferior NOx storage and, particularly, reduction (regeneration) activity compared to the Al2O3 supported catalyst. The incomplete reduction of the stored NOx-species in Pt/Ba/CeO2 seems to be caused by a faster and more profound reoxidation of Pt particles during the lean period as evidenced by in situ X-ray absorption spectroscopy. Interestingly, the reduction activity could be significantly improved by a pre-reduction step at mild conditions. Exposure of the Pt/Ba/CeO2 catalyst to reducing H2 atmosphere in the temperature range 300–500 °C lead to a moderate increase of Pt particle size which beneficially influenced the regeneration activity. In contrast, pre-reduction at temperatures above 500 °C was unfavorable and resulted in a severe decrease of the regeneration activity, probably due to migration of the partially reduced CeO2 onto the surface of Pt particles.  相似文献   

6.
The effect of SO2 on the NOx storage capacity and oxidation and reduction activities of a model Pt/Rh/BaO/Al2O3 NOx storage catalyst was investigated. Addition of 2.5, 7.5 or 25 vol. ppm SO2 to a synthetic lean exhaust gas caused deactivation of the NOx storage function, the oxidation activity and the reduction activity of the catalyst. The degree of deactivation of the NOx storage capacity was found to be proportional to the total SO2 dose that the catalyst had been exposed to. SO2 was found to be accumulated in the catalyst as sulphate.  相似文献   

7.
Ceria (CeO2) and rare-earth modified ceria (CeReOx with Re = La3+, Pr3+/4+, Sm3+, Y3+) supports and Pt impregnated supports are studied for the soot oxidation under a loose contact with the catalyst with the feed gas, containing NO + O2. The catalysts are characterised by XRD, H2-TPR, DRIFT and Raman spectroscopy. Among the single component oxides, CeO2 is significantly more active compared with the other lanthanide oxides used in this study. Doping CeO2 with Pr3+/4+ and La3+ improved, however, the soot oxidation activity of the resulting solid solutions. This improvement is correlated with the surface area in the case of CeLaOx and to the surface area and redox properties of CePrOx catalyst. The NO conversion to NO2 over these catalysts is responsible for the soot oxidation activity. If the activity per unit surface area is compared CePrOx is the most active one. This indicates that though La3+ can stabilise the surface area of the catalyst in fact it decreases the soot oxidation activity of Ce4+. The lattice oxygen participates in NO conversion to NO2 and the rate of this lattice oxygen transfer is much faster on CePrOx. In general, the improvement of the soot oxidation is observed over the Pt impregnated CeO2 and CeReOx catalysts, and can be correlated to the presence of Pt°. The surface reduction of the supports in the presence of Pt occurred below 100 °C. The surface redox properties of the support in the Pt catalysts do not have a significant role in the NO to NO2 conversion. In spite of the lower surface area, the Pt/CeYOx and Pt/CeO2 catalysts are found to be more active due to larger Pt crystal sizes. The presence of Pt also improved the CO conversion to CO2 over these catalysts. The activation energy for the soot oxidation with NO + O2 is found to be around 50 kJ/mol.  相似文献   

8.
A series of 1 wt.%Pt/xBa/Support (Support = Al2O3, SiO2, Al2O3-5.5 wt.%SiO2 and Ce0.7Zr0.3O2, x = 5–30 wt.% BaO) catalysts was investigated regarding the influence of the support oxide on Ba properties for the rapid NOx trapping (100 s). Catalysts were treated at 700 °C under wet oxidizing atmosphere. The nature of the support oxide and the Ba loading influenced the Pt–Ba proximity, the Ba dispersion and then the surface basicity of the catalysts estimated by CO2-TPD. At high temperature (400 °C) in the absence of CO2 and H2O, the NOx storage capacity increased with the catalyst basicity: Pt/20Ba/Si < Pt/20Ba/Al5.5Si < Pt/10Ba/Al < Pt/5Ba/CeZr < Pt/30Ba/Al5.5Si < Pt/20Ba/Al < Pt/10BaCeZr. Addition of CO2 decreased catalyst performances. The inhibiting effect of CO2 on the NOx uptake increased generally with both the catalyst basicity and the storage temperature. Water negatively affected the NOx storage capacity, this effect being higher on alumina containing catalysts than on ceria–zirconia samples. When both CO2 and H2O were present in the inlet gas, a cumulative effect was observed at low temperatures (200 °C and 300 °C) whereas mainly CO2 was responsible for the loss of NOx storage capacity at 400 °C. Finally, under realistic conditions (H2O and CO2) the Pt/20Ba/Al5.5Si catalyst showed the best performances for the rapid NOx uptake in the 200–400 °C temperature range. It resulted mainly from: (i) enhanced dispersions of platinum and barium on the alumina–silica support, (ii) a high Pt–Ba proximity and (iii) a low basicity of the catalyst which limits the CO2 competition for the storage sites.  相似文献   

9.
Gas-phase oxidation of benzene using a mixture of oxygen and hydrogen has been carried out on silica-supported vanadium oxide catalysts modified with platinum or palladium. Catalyst activity and phenol selectivity were studied as a function of the precious metal used, the vanadium oxide loading as well as of temperature. The binary catalysts have been characterized by TPR and TEM. Pt-VOx/SiO2 catalysts were more active than Pd-VOx/SiO2 catalysts. By using platinum catalysts benzene conversion amounted to 1.0% (Sphenol=97%) at 413 K, whereas palladium catalysts reached a conversion of only 0.2% (Sphenol=86%) for the same contact time and temperature. The most active catalyst for the oxidation of benzene to phenol was a low vanadium loaded 0.5 wt.% Pt–3 wt.% V on silica catalyst. At temperatures above 413 K phenol selectivity decreased strongly because of enhanced total oxidation. Active catalysts need both components: a dispersed transition metal oxide such as VOx as well as small precious metal particles such as platinum. The activity of the catalysts arises from a close interaction between the redox-active compound VOx and the electron mediator and hydrogen activator platinum as was confirmed by correlation of catalytic results and catalyst properties. Highly dispersed platinum particles are exclusively located on the vanadium oxide covered surface as demonstrated by TEM investigations. TPR studies showed and enhanced reducibility of a part of vanadium(V) oxide indication a close neighborhood of VOx and platinum.  相似文献   

10.
A multi-component NOx-trap catalyst consisting of Pt and K supported on γ-Al2O3 was studied at 250 °C to determine the roles of the individual catalyst components, to identify the adsorbing species during the lean capture cycle, and to assess the effects of H2O and CO2 on NOx storage. The Al2O3 support was shown to have NOx trapping capability with and without Pt present (at 250 °C Pt/Al2O3 adsorbs 2.3 μmols NOx/m2). NOx is primarily trapped on Al2O3 in the form of nitrates with monodentate, chelating and bridged forms apparent in Diffuse Reflectance mid-Infrared Fourier Transform Spectroscopy (DRIFTS) analysis. The addition of K to the catalyst increases the adsorption capacity to 6.2 μmols NOx/m2, and the primary storage form on K is a free nitrate ion. Quantitative DRIFTS analysis shows that 12% of the nitrates on a Pt/K/Al2O3 catalyst are coordinated on the Al2O3 support at saturation.

When 5% CO2 was included in a feed stream with 300 ppm NO and 12% O2, the amount of K-based nitrate storage decreased by 45% after 1 h on stream due to the competition of adsorbed free nitrates with carboxylates for adsorption sites. When 5% H2O was included in a feed stream with 300 ppm NO and 12% O2, the amount of K-based nitrate storage decreased by only 16% after 1 h, but the Al2O3-based nitrates decreased by 92%. Interestingly, with both 5% CO2 and 5% H2O in the feed, the total storage only decreased by 11%, as the hydroxyl groups generated on Al2O3 destabilized the K–CO2 bond; specifically, H2O mitigates the NOx storage capacity losses associated with carboxylate competition.  相似文献   


11.
In order to survey new CO-tolerant anode for the PEFC application, the addition of TaOx and NbOx to the Pt catalyst was examined in the electrochemical oxidation of CO in a sulfuric acid solution. Voltammetric peak potentials for the oxidation of CO pre-adsorbed on the Pt surface shifted to lower potentials by these additives, indicating an enhancement of electro-catalysis of Pt for the CO oxidation. Both oxides of Ta or Nb also bring about an inhibition of the CO adsorption rate onto the Pt surface. Concerted effect of these oxides with Ru is discussed for the CO oxidation over the PtRu-TaOx and the PtRu-NbOx anodes.  相似文献   

12.
A mean field model, for storage and desorption of NOx in a Pt/BaO/Al2O3 catalyst is developed using data from flow reactor experiments. This relatively complex system is divided into five smaller sub-systems and the model is divided into the following steps: (i) NO oxidation on Pt/Al2O3; (ii) NO oxidation on Pt/BaO/Al2O3; (iii) NOx storage on BaO/Al2O3; (iv) NOx storage on Pt/BaO/Al2O3 with thermal regeneration and (v) NOx storage on Pt/BaO/Al2O3 with regeneration using C3H6. In this paper, we focus on the last sub-system. The kinetic model for NOx storage on Pt/BaO/Al2O3 was constructed with kinetic parameters obtained from the NO oxidation model together with a NOx storage model on BaO/Al2O3. This model was not sufficient to describe the NOx storage experiments for the Pt/BaO/Al2O3, because the NOx desorption in TPD experiments was larger for Pt/BaO/Al2O3, compared to BaO/Al2O3. The model was therefore modified by adding a reversible spill-over step. Further, the model was validated with additional experiments, which showed that NO significantly promoted desorption of NOx from Pt/BaO/Al2O3. To this NOx storage model, additional steps were added to describe the reduction by hydrocarbon in experiments with NO2 and C3H6. The main reactions for continuous reduction of NOx occurs on Pt by reactions between hydrocarbon species and NO in the model. The model is also able to describe the reduction phase, the storage and NO breakthrough peaks, observed in experiments.  相似文献   

13.
《Catalysis Today》2002,73(3-4):343-353
Low temperature oxidation of CO over alloy type Sn–Pt/SiO2 catalysts with different Sn/Pt ratios has been investigated at different CO partial pressure using thermal programmed oxidation (TPO) technique and time on stream (TOS) experiments. The introduction of tin into platinum strongly increased the activity of the catalyst. The activity had a maximum, which depended on both the Sn/Pt (at./at.) ratio and the CO partial pressure. TOS experiments revealed the aging of the Sn–Pt/SiO2 catalysts. FTIR and Mössbauer spectroscopy has been used to follow compositional and structural changes of Sn–Pt/SiO2 catalysts during the catalytic run. The results show that the in situ formed, highly mobile “Snn+–Pt” ensemble sites are responsible for high activity, while formation of relatively stable SnOx type surface species are involved in the catalyst deactivation.  相似文献   

14.
A study of CO oxidation by O2 over Pt catalysts, promoted by MnOx and CoOx, is described. The activities of Pt/SiO2, Pt/MnOx/SiO2 and Pt/CoOx/SiO2 are compared with commercial Pt/Al2O3, Pt/Rh/Al2O3 and Pt/CeOx/Al2O3 catalysts. Since these catalysts differ in dispersion and weight loading of platinum, the turnover frequencies are also compared. The following order in activity in CO oxidation after a reductive pretreatment is found: Pt/CoOx/SiO2 > Pt/MnOx/SiO2, Pt/CeOx/Al2O3 > Pt/Al2O3, Pt/Rh/Al2O3, Pt/SiO2. Over Pt/CoOx/SiO2 CO is already oxidised at room temperature. Possible models to account for the high activity of Pt/CoOx/SiO2 in the CO/O2 reaction are presented and discussed. Partially reduced metal oxides are necessary to increase the activity of the Pt/CoOx/SiO2, Pt/MnOx/SiO2 or Pt/CeOx/Al2O3 catalysts. It was shown that mild ageing treatments did not affect the activity of the Pt/CoOx/SiO2 catalyst in CO oxidation.  相似文献   

15.
Catalytic activities of various Pt/MOx/SiC systems for carbon oxidation under simulated diesel exhaust gas were investigated in temperature-programmed reactions. When Pt/MOx (MOx=TiO2, ZrO2, Al2O3) was loaded onto silicon carbide (SiC), the oxidation activities became higher than those of Pt/MOx alone or other Pt/MOx/SiC systems (MOx=Ta2O5, WO3, Nb2O5, SnO2, SiO2, CeO2, MoO3, V2O5). Among them, Pt/TiO2/SiC exhibited the highest activity. We discuss the activity of MOx=TiO2, ZrO2, and Al2O3 in connection with NO oxidation activity, adsorption of sulfate onto the support, Pt dispersion, and specific surface area of the catalyst. Furthermore, we investigated the catalytic performance of Pt/TiO2/SiC in more detail under isothermal conditions and in a staged arrangement.  相似文献   

16.
The release and reduction of NOx in a NOx storage-reduction (NSR) catalyst were studied with a transient reaction analysis in the millisecond range, which was made possible by the combination of pulsed injection of gases and time resolved time-of-flight mass spectrometry. After an O2 pulse and a subsequent NO pulse were injected into a pellet of the Pt/Ba/Al2O3 catalyst, the time profiles of several gas products, NO, N2, NH3 and H2O, were obtained as a result of the release and reduction of NOx caused by H2 injection. Comparing the time profiles in another analysis, which were obtained using a model catalyst consisting of a flat 5 nmPt/Ba(NO3)2/cordierite plate, the release and reduction of NOx on Pt/Ba/Al2O3 catalyst that stored NOx took the following two steps; in the first step NO molecules were released from Ba and in the second step the released NO was reduced into N2 by H2 pulse injection. When this H2 pulse was injected in a large amount, NO was reduced to NH3 instead of N2.

A only small amount of H2O was detected because of the strong affinity for alumina support. We can analyze the NOx regeneration process to separate two steps of the NOx release and reduction by a detailed analysis of the time profiles using a two-step reaction model. From the result of the analysis, it is found that the rate constant for NOx release increased as temperature increase.  相似文献   


17.
高奕吟  付睿  王丽  郭耘 《化工学报》2022,73(10):4429-4437
通过制备Pt/Nb x /TiO2研究了NbO x 在催化燃烧氯乙烯中的作用;采用XRD、XPS、H2-TPR、NH3-TPD与Py-FT-IR表征了NbO x 对于催化剂组织结构、氧化还原以及酸碱性的影响。负载NbO x 可促进Pt/TiO2反应性能的提高,当Nb/Ti摩尔比为0.09时,即Pt/Nb0.09/TiO2可在246℃实现90%氯乙烯的转化;与Pt/TiO2相比,达到相同转化率的温度向低温偏移69℃。NbO x 也影响了催化燃烧过程中的含氯副产物的总浓度和分布。催化剂表征结果发现NbO x 的引入可进一步增加Pt与载体(TiO2)之间的相互作用,提高催化剂的表面活性氧物种的浓度,进而促进了催化剂氧化还原性能的提高。催化剂表面的总酸量随着NbO x 含量的增加而降低,尤其是表面Lewis酸量。因此,催化剂表面的酸量和酸分布不是决定反应性能的唯一因素,而低温的氧化还原性更有利于催化剂性能的提高。  相似文献   

18.
To characterize the oxygen mobility over metal supported catalysts on a dynamic and in situ base, 18O/16O isotopic exchange reaction combined with CO oxidation was designed and exemplified on three kinds of three way catalysts of Pt/CeO2-ZrO2 (CZ-O, CZ-D and CZ-R). The obtained oxygen diffusion coefficients, oxygen release rate, and oxygen storage capacity were discussed and correlated with XRD spectra and other physical parameters. It was found that the oxygen mobility and oxygen storage capacity were parallel to the structural homogeneity of Zr introduction into the CeO2 frame work, and decreased as: CZ-R > CZ-D > CZ-O. These results indicated that this combined isotopic exchange technique could be used to quantify the surface and bulk oxygen mobility, the oxygen storage capacity and oxygen release rate over the metal supported catalysts, and could be employed as a meaningful probe into the nature of CeO2-ZrO2 oxygen storage material. The oxygen mobility is also another important indicator for the development of oxygen storage materials.  相似文献   

19.
This study addresses the catalytic reaction of NOx and soot into N2 and CO2 under O2-rich conditions. To elucidate the mechanism of the soot/NOx/O2 reaction and particularly the role of the catalyst -Fe2O3 is used as model sample. Furthermore, a series of examinations is also made with pure soot for reference purposes. Temperature programmed oxidation and transient experiments in which the soot/O2 and soot/NO reaction are temporally separated show that the NO reduction occurs on the soot surface without direct participation of the Fe2O3 catalyst. The first reaction step is the formation of CC(O) groups that is mainly associated with the attack of oxygen on the soot surface. The decomposition of these complexes leads to active carbon sites on which NO is adsorbed. Furthermore, the oxidation of soot by oxygen provides a specific configuration of active carbon sites with suitable atomic orbital orientation that enables the chemisorption and dissociation of NO as well as the recombination of two adjacent N atoms to evolve N2. Moreover, carbothermal reaction, high resolution transmission electron microscopy and isotopic studies result in a mechanistic model that describes the role of the Fe2O3 catalyst. This model includes the dissociative adsorption of O2 on the iron oxide, surface migration of the oxygen to the contact points of soot and catalyst and then final transfer of O to the soot. Moreover, our experimental data suggest that the contact between both solids is maintained up to high conversion levels thus resulting in continuous oxygen transfer from catalyst to soot. As no coordinative interaction of soot and Fe2O3 catalyst is evidenced by diffuse reflectance infrared Fourier transform spectroscopy a van der Waals type interaction is supposed.  相似文献   

20.
The catalytic reduction of NOx in the typical operation temperatures and oxygen concentrations of diesel engines has been studied in the presence of V3W9Ti in a tubular flow reactor. The results have shown that the selective catalytic reduction is strongly affected by the oxygen concentration in low temperature range (150–275 °C). At higher temperatures, the reaction becomes independent of the O2 concentration. The rate of the selective catalytic reduction of NO with ammonia may be considerably enhanced by converting part of the NO into NO2. DRIFT measurements have shown that NH3 and NO2 are adsorbed on the catalyst surface on the contrary of NO. The experiments have shown that the decrease in N2 selectivity of the SCR reaction is mainly due to the SCO of ammonia and to the formation of nitrous oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号