首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Townsend E  Bryant GW 《Nano letters》2012,12(1):429-434
We examine the size quantization of plasmons in metallic nanoparticles using time-dependent density functional theory. For small particles in the quantum limit, we identify "quantum core plasmons" and "classical surface plasmons", both of which are collective oscillations comprised of multiple single-particle transitions. As particle size increases, the response of the classical surface plasmons becomes much larger than that of the quantum core plasmons.  相似文献   

2.
采用原位聚合法对ZnS量子点表面进行聚丙烯酸(PAA)的修饰。利用XRD、FTIR、TEM、TGA、荧光测试等对ZnS@PAA复合纳米粒子进行系列表征。XRD分析表明,修饰后的ZnS仍为立方晶相。FTIR和TGA结果证明,ZnS纳米粒子表面存在PAA。TEM结果表明,修饰后ZnS@PAA复合纳米粒子在去离子水中分散良好,其直径有所增加,约为28 nm,且呈较明显的核-壳结构。荧光测试发现,修饰PAA前后ZnS@PAA复合纳米粒子的发光特性没有发生明显改变。实验表明,经PAA修饰后,ZnS@PAA复合纳米粒子在水溶液中的分散性和稳定性得到提高,抗氧化性和荧光稳定性也得到了一定的增强。   相似文献   

3.
Nanoparticles are of immense importance both from the fundamental and application points of view. They exhibit quantum size effects which are manifested in their improved magnetic and electric properties. Mechanical attrition by high energy ball milling (HEBM) is a top down process for producing fine particles. However, fineness is associated with high surface area and hence is prone to oxidation which has a detrimental effect on the useful properties of these materials. Passivation of nanoparticles is known to inhibit surface oxidation. At the same time, coating polymer film on inorganic materials modifies the surface properties drastically. In this work a modified set-up consisting of an RF plasma polymerization technique is employed to coat a thin layer of a polymer film on Fe nanoparticles produced by HEBM. Ball-milled particles having different particle size ranges are coated with polyaniline. Their electrical properties are investigated by measuring the dc conductivity in the temperature range 10-300?K. The low temperature dc conductivity (I-V) exhibited nonlinearity. This nonlinearity observed is explained on the basis of the critical path model. There is clear-cut evidence for the occurrence of intergranular tunnelling. The results are presented here in this paper.  相似文献   

4.
非晶氮化硅纳米粒子的制备及量子限制效应   总被引:6,自引:0,他引:6  
  相似文献   

5.
采用常压辉光放电等离子体制备了超细荧光碳纳米粒子。分别采用聚乙二醇(PEG)2000和聚乙烯吡咯烷酮(PVP)20000作为表面活性剂和表面修饰剂,利用辉光放电等离子体射流产生的大量高能电子等活性粒子分解乙醇溶液制备碳纳米粒子。采用透射电子显微镜和荧光分光光度计对生成物的形貌和荧光特性进行了检测。结果表明,生成物为石墨相的荧光碳纳米颗粒。随着反应时间的延长,生成物的荧光强度增强;采用PEG-2000修饰后产物的荧光强度比采用PVP-20000更强;丝状放电模式下生成物的荧光强度高于辉光放电模式。制备的碳纳米颗粒的荧光量子产率为46.58%。  相似文献   

6.
The cadmium(II) complexes of thiourea and N-alkylthioureas (with alkyl group methyl or ethyl) have been used as precursors for the preparation of TOPO-capped CdS nanoparticles. The precursors are air-stable, easy to prepare and inexpensive. These compounds decompose cleanly to give good quality crystalline materials. The nanoparticles obtained showed quantum confinement effects in their optical spectra and close-to-band-edge emission in luminescence experiments. The broad diffraction patterns and the diffuse rings observed in the SAED patterns are typical of nanometric particles. The TEM images showed agglomerates of needle-like plates of particles. The presence of a strong phosphorus peak in the EDAX spectra is indicative of TOPO bound to the surface.  相似文献   

7.
A comparative study of the photodegradation of CdS nanoparticles coated with silica shells dispersed in water and embedded in two silica gels with different pore size is presented. Although encapsulation of the quantum dots in a silica shell previously was proven to provide a basically permanent protection against light-induced surface oxidation (photodegradation), this protection is not always maintained when the coated particles are incorporated within different silica gels. Degradation of the CdS occurs when the coated particles are incorporated within silica gels with an open structure, which suggests that the shells somehow crack due to tension in the gel structure. This behavior is analyzed by absorption and luminescence spectroscopies, electron microscopy, and nitrogen sorption.  相似文献   

8.
The use of traditional fluorophores for in vivo imaging applications is limited by poor quantum yield, poor tissue penetration of the excitation light, and excessive tissue autofluorescence, while the use of inorganic fluorescent particles that offer a high quantum yield is frequently limited due to particle toxicity. Rare‐earth‐doped nanoparticles that utilize near‐infrared upconversion overcome the optical limitations of traditional fluorophores, but are not typically suitable for biological application due to their insolubility in aqueous solution, lack of functional surface groups for conjugation of biomolecules, and potential cytotoxicity. A new approach to establish highly biocompatible and biologically targetable nanoshell complexes of luminescent rare‐earth‐doped NaYF4 nanoparticles (REs) excitable with 920–980 nm near‐infrared light for biomedical imaging applications is reported. The approach involves the encapsulation of NaYF4 nanoparticles doped with Yb and Er within human serum albumin nanoshells to create water‐dispersible, biologically functionalizable composite particles. These particles exhibit narrow size distributions around 200 nm and are stable in aqueous solution for over 4 weeks. The albumin shell confers cytoprotection and significantly enhances the biocompatibility of REs even at concentrations above 200 µg REs mL?1. Composite particles conjugated with cyclic arginine‐glycine‐aspartic acid (cRGD) specifically target both human glioblastoma cell lines and melanoma cells expressing αvβ3 integrin receptors. These findings highlight the promise of albumin‐encapsulated rare‐earth nanoparticles for imaging cancer cells in vitro and the potential for targeted imaging of disease sites in vivo.  相似文献   

9.
Our work is devoted to the development of YAG:Ce3+ phosphor nanoparticle-based converter layer for white LEDs. To avoid losses due to scattering effects, the strategy is to control separately the down-conversion and the extraction of light instead of using micron-sized luminescent particles acting simultaneously as both converter and scatterer. YAG:Ce nanoparticles were synthesized by a glycothermal method in autoclave at low temperature (300 °C). Y3Al5O12 garnet phase with a crystallite size of 25 nm was obtained, as verified by X-ray diffraction and electron microscopy. The quantum yield of nanoparticles is 55%. The colloidal nanoparticles are finally incorporated into a sol-gel matrix of TiO2. The small difference in refractive index between particles and matrix and the nanosize of the particles contribute to the transparency of the converter films. The surface of these layers can be periodically patterned by soft nano-imprint lithography. The diffraction due to the obtained photonic crystal at the surface may offer the opportunity to compensate the absence of scattering to extract the converted light.  相似文献   

10.
A new kind of superparamagnetic luminescent nanocomposite particles has been synthesized using a modified Stöber method combined with an electrostatic assembly process. Fe3O4 superparamagnetic nanoparticles were coated with uniform silica shell, and then 3-aminopropyltrimethoxysilane was used to terminate the silica surface with amino groups. Finally, negatively charged CdSe quantum dots (QDs) were assembled onto the surface of the amino-terminated SiO2/Fe3O4 nanoparticles through electrostatic interactions. X-ray diffraction (XRD), transmission electron microscopy (TEM), microelectrophoresis, UV-vis absorption and emission spectroscopy and magnetometry were applied to characterize the nanocomposite particles. Dense CdSe QDs were immobilized on the silica surface. The thickness of silica shell was about 35 nm and the particle size of the final products was about 100 nm. The particles exhibited favorable superparamagnetic and photoluminescent properties.  相似文献   

11.
Tseng CH  Chen CY 《Nanotechnology》2008,19(3):035606
This study presents a novel method for preparing multi-walled carbon nanotubes (MWNTs) grafted with a poly(2-hydroxyethyl methacrylate) (HEMA)-silver complex (CNTs-HEMA-Ag complex) through plasma-induced grafting polymerization. The characteristics of the MWNTs after being grafted with HEMA polymer are monitored by Fourier transform infrared (FT-IR) spectroscopy. The chelating groups in the HEMA polymer grafted on the surface of the CNTs-HEMA are the coordination sites for chelating silver ions, and are further used as nanotemplates for the growing of Ag nanoparticles (quantum dots). Transmission electron microscopy (TEM) reveals that the particle size of Ag nanoparticles on the CNT surfaces increases with the Ag(+) chelating concentration, reaction time, and reaction temperature. Moreover, the crystalline phase of Ag nanoparticles is identified by using x-ray diffraction (XRD). In addition, high-resolution x-ray photoelectron spectroscopy (XPS) is used to characterize the functional groups on the surface of the MWNTs after chemical modification through plasma treatment; it demonstrates that the growing amount of the Ag nanoparticles on the nanotubes increases with the Ag(+) chelating concentration due to the blocking effect of the Ag particles forming on the MWNTs.  相似文献   

12.
Cysteine acrylamide (N-acryloyl L-cysteine) stabilizes CdS nanoparticles as the particles form in aqueous dispersions. Cysteine acrylamide also exchanges for citrate on the surfaces of CdSe and core/shell CdSe/CdS nanoparticles to provide greater stability. Heating of the nanoparticle dispersions polymerizes the cysteine acrylamide on the surface to form a more efficient polydentate stabilizer. The polymer-coated nanoparticle dispersions are colloidally stable even after removal of low molecular weight solutes by dialysis. Emission quantum yields of the polymer-coated CdSe and CdSe/CdS samples were 0.9% and 2.6%, respectively, after aging of the samples in light. CdSe/CdS coated with poly(cysteine acrylamide) is colloidally stable for at least two years in the dark at 5 degrees C.  相似文献   

13.
SnO2 nanoparticles with uniform size and well crystallinity were prepared by using soft chemical technique. Surfactant was used to control the growth and agglomeration of the SnO2 nanoparticles. X-ray diffraction patterns and transmission electron microscopy were used to characterize the structures of SnO2 nanoparticles before and after thermal annealing. It is found that the size of SnO2 nanoparticles can be controlled by changing the preparation parameters and post-thermal annealing temperatures (400 degrees C-1000 degrees C). The optical band gap of SnO2 particles was enlarged compared to its bulk counterpart and the red-shift of the optical band gap with the particle size was observed which can be attributed to quantum size effect. A broad photoluminescence band in a range of 350-550 nm associating with the defect states on the SnO2 particle surface was detected and the intensity was significantly enhanced after the thermal annealing while the size-dependent luminescence excitation spectra were also observed.  相似文献   

14.
This paper describes the synthesis and surface engineering of core/shell-type iron/iron oxide nanoparticles for magnetic hyperthermia cancer therapy. Iron/iron oxide nanoparticles were synthesized from microemulsions of NaBH(4) and FeCl(3), followed by surface modification in which a thin hydrophobic hexamethyldisilazane layer - used to protect the iron core - replaced the CTAB coating on the particles. Phosphatidylcholine was then assembled on the nanoparticle surface. The resulting nanocomposite particles have a biocompatible surface and show good stability in both air and aqueous solution. Compared to iron oxide nanoparticles, the nanocomposites show much better heating in an alternating magnetic field. They are good candidates for both hyperthermia and magnetic resonance imaging applications.  相似文献   

15.
Anisotropic surface modification of TiO2 nanoparticles was achieved applying a Pickering emulsion approach. TiO2 nanoparticles were prepared by sol-gel routes which allowed an excellent control over their size and morphology. The obtained colloids were further used as stabilizers in the formation of oil-in-water Pickering emulsion. For reasons of comparison, also commercially available titanium dioxide nanoparticles (Evonik AEROXIDE TiO2 P25) were used in the functionalization experiments. An organophosphorus coupling agent present in the oil phase coordinated to the surface of the anatase nanoparticles. In such a way an anisotropic surface modification of the particles was achieved which increased the stability of the Pickering emulsion. Spectroscopic studies revealed the presence of organophosphorus coupling agents which exhibited a covalent bonding to the surface of the particles. Thermogravimetric analyses confirmed a lower surface coverage of the particles modified in emulsion compared to those modified in suspension. Reactions of organophosphorus coupling agents containing an additional methacrylate group applying an organic monomer (methyl methacrylate) as the oil phase of the Pickering emulsion resulted in hybrid TiO2@polymer spheres. Spectroscopic characterization of the resulting particles revealed that the phosphonates were coordinated to the TiO2 surface and at the same time copolymerized with the MMA within the oil droplet. Morphological investigations of the isolated final product showed that the material was composed of polymer spheres with the stabilizing TiO2 nanoparticles on their surface.  相似文献   

16.
The colloidal route to semiconductor nanocrystals is extremely flexible, with a high degree of control over size, size distribution, surface passivation and internal structure of the nanoparticles. Simple chemically controlled techniques can be used to assemble these particles into dense films or other microscopic structures, suitable for photonic devices. Working with semiconductors or semi-metals which in the bulk form have low or inverted bandgaps, and taking advantage of the blue shift in the quantum confinement regime, nanocrystals can readily be tuned to the infrared wavelengths of interest for telecommunications. Design flexibility is far greater than with conventional compound semiconductors or rare-earth-doped glasses. Preliminary results demonstrating optical gain from II-VI nanocrystal films at room temperature are reported.  相似文献   

17.
Synthesis and antibacterial properties of silver nanoparticles   总被引:14,自引:0,他引:14  
Nanometer sized silver particles were synthesized by inert gas condensation and co-condensation techniques. Both techniques are based on the evaporation of a metal into an inert atmosphere with the subsequent cooling for the nucleation and growth of the nanoparticles. The antibacterial efficiency of the nanoparticles was investigated by introducing the particles into a media containing Escherichia coli. The antibacterial investigations were performed in solution and on petri dishes. The silver nanoparticles were found to exhibit antibacterial effects at low concentrations. The antibacterial properties were related to the total surface area of the nanoparticles. Smaller particles with a larger surface to volume ratio provided a more efficient means for antibacterial activity. The nanoparticles were found to be completely cytotoxic to E. coli for surface concentrations as low as 8 microg of Ag/cm2.  相似文献   

18.
Magnetic nanoparticles, which are unique because of both structural and functional elements, have various novel applications. The popularity and practicality of nanoparticle materials create a need for a synthesis method that produces quality particles in sizable quantities. This paper describes such a method, one that uses bacterial synthesis to create nanoparticles of magnetite. The thermophilic bacterial strain Thermoanaerobacter ethanolicus TOR-39 was incubated under anaerobic conditions at 65/spl deg/C for two weeks in aqueous solution containing Fe ions from a magnetite precursor (akaganeite). Magnetite particles formed outside of bacterial cells. We verified particle size and morphology by using dynamic light scattering, X-ray diffraction, and transmission electron microscopy. Average crystallite size was 45 nm. We characterized the magnetic properties by using a superconducting quantum interference device magnetometer; a saturation magnetization of 77 emu/g was observed at 5 K. These results are comparable to those for chemically synthesized magnetite nanoparticles.  相似文献   

19.
Crystalline ZnO quantum dots have been synthesized by hydrolysis of zinc acetate dihydrate with lithium hydroxide in ethanolic solution. By varying different parameters of the synthesis process, the size of the ZnO particles can be controlled. Detailed investigation of the ripening of the nanoparticles evidenced that despite of the well-known influence of ageing temperature and time, the presence of the reaction byproduct lithium acetate strongly affects the ripening behaviour. In particular, the particle size can be almost completely arrested by the removal of this byproduct via reversible flocculation of the ZnO nanoparticles using heptane as an antisolvent. A closer analysis of the repeated washing process shows an initial improvement of the colloidal stability of the ZnO nanoparticles during the first purification cycle as it mainly removes the lithium acetate from the suspension and not the stabilizing acetate groups directly bound to the particle surface. With further washing the remaining acetate ligands are unable to maintain the stabilization against agglomeration of the ZnO nanoparticles. Thus, there exists an optimum between purification progress and colloidal stability. These findings are also confirmed by calculations according to the DLVO theory, which show that there exists nearly no primary minimum of small ZnO nanoparticles below 5 nm in the presence of stabilizing acetate ions whereas the decrease in acetate ions bound to the particle surface leads to a more and more pronounced primary minimum. The present work is of particular significance for the preparation of purified colloidal ZnO nanoparticles for studies of their electrical and optical properties with respect to their wide range of potential applications.  相似文献   

20.
Doering WE  Nie S 《Analytical chemistry》2003,75(22):6171-6176
Surface-enhanced Raman scattering is capable of providing rich vibrational information at the level of single molecules and single nanoparticles, but the practical applications of this enormous enhancement effect are still a challenge. Here we report a new class of dye-embedded core-shell nanoparticles that are highly efficient for surface Raman enhancement and could be used as spectroscopic tags for multiplexed detection and spectroscopy. The core-shell particles contain a metallic core for optical enhancement, a reporter molecule for spectroscopic signature, and an encapsulating silica shell for protection and conjugation. A surprising finding is that organic molecules with an isothiocyanate (-N=C=S) group or multiple sulfur atoms are compatible with silica encapsulation. In comparison with fluorescent dyes and quantum dots, enhanced Raman probes contain a built-in mechanism for signal amplification and provide rich spectroscopic information under ambient experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号