首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
股骨头切削手术是一种常见的治疗股骨头坏死的手术方法,具有自动钻削,微创伤等特点的先进手术器械解决方案越来越多的代替传统人工方式,其中,钻头的优化设计和骨骼材料的切削特性的分析方法对该类器械设计方案具有理论和指导意义.研究了一种新型的用于切削手术的微创钻扩系统,在相关实验平台上,研究了机构中钻头的设计参数、轴向力和转速之间的关系,在此基础上建立对钻扩系统的机械设计中的参数设定和优化的实验与理论依据.  相似文献   

2.
To investigate the influence of the geometric structure of coated cemented carbide twist drills on the drill tool life, drilling experiments of 42CrMo steel were carried out at various cutting parameters. The geometric structure parameters of the specially manufactured drill bits were designed by the multifactor orthogonal experiment method. The effects of cutting edge preparation, drill point geometry, and flute geometry on the tool wear were investigated by the range analysis and variance analysis. And their effects on chip pattern were also studied. Then the influence of cutting parameters on the tool life was investigated. Based on these investigations and extending the tool life, the optimized geometric structure was the honed cutting edge with a radius of 0.06 mm and conventional conical flank, and the corresponding cutting parameters were 80 m/min and 0.18 mm/rev. At last, the tool wear characteristics were discussed and the main wear mechanisms were abrasive wear, adhesive wear, coating exfoliation, and tipping.  相似文献   

3.
This article investigates the chip formation mechanism and its influence on cutting forces during the elliptic vibration-assisted (EVA) cutting of fiber-reinforced polymer composites. To clarify the effect of the vibration, systematic finite element and experimental studies were performed on both the EVA and the traditional cutting of unidirectional fiber-reinforced polymers with various fiber orientations. The key factors that govern the cutting forces have been taken into account, such as the depth of cut, feed rate, tool vibration frequency and amplitude. The study found that fiber orientation significantly affects the chip formation and cutting forces. Fiber fracture can happen either above or below the trimming path, but that above the path dominates chip formation. When a fiber orientation is less than 90°, chipping is mainly through bending-induced fracture of fibers; when it is beyond 90°, however, chipping is mostly by crushing the fracture of fibers. Compared with a traditional cutting process, the EVA cutting can minimize the fiber orientation effect through localized fiber fracture. A dimensional analysis was then performed to provide a quantitative prediction of the cutting forces.  相似文献   

4.
In this study, the optimization of the cutting parameters on drill bit temperature in drilling was performed. Al 7075 work piece and the uncoated and Firex® coated carbide drills in the experimental were used. The optimization of the cutting parameters was evaluated by Taguchi method. The control factors were considered as the cutting speed, feed rate and cutting tool. Taguchi method was used to determining the settings of cutting parameters. The L18 orthogonal array was used in experimental planning. The most significant control factors affected on drill bit temperature measurements was obtained by using analysis of variance (ANOVA). Taguchi design method exhibit a good performance in the optimization of cutting parameters on drill bit temperature measurements. In addition, the empirical equations of drill bit temperatures were derived by using regression analysis. The obtained equations results compared with the drill bit temperature measurement results. The empirical equations results indicated a good agreement with experimental results.  相似文献   

5.
回转振动钻削是针对某些难加工材料的微小孔或加工工序而实施的有效方法之一,这种钻削方法改变了传统的钻削机理,笔者对振动钻削的工作原理和特点进行了综述,并分析了回转振动钻削切削力的产生,总结了影响回转振动切削力的主要因素。  相似文献   

6.
In this study, the cutting characteristics of a drill reamer, which has conventional twist drill cutting edges appended for reaming, were investigated. A drill reamer has three types of cutting edges, whose roles are drilling, semi-finishing, and finishing. The cutting characteristics of a conventional twist drill were compared to those of the drill reamer. The cutting characteristics were evaluated using the thrust force, cutting torque, surface roughness, wear behavior of the cutting edges, and cutting edge temperature. The study used a workpiece made of carbon steel. The temperature of the cutting edge for reaming reached a maximum value of approximately 420°C, even though the depth of the cut was very small. The inner surface roughness with the drill reamer was superior to that with the conventional drill, even under dry and low-speed cutting conditions. The abrasive wear observed on the margin face of the cutting edge used for reaming.  相似文献   

7.

Serious tool wear in CFRP drilling is one of the key problems to be solved urgently. Firstly, a suitable indirect evaluation index of tool life is selected according to the literature. The critical delamination force was obtained by blind hole pushing experiment. Then, tool wear experiments were carried out with double point angle drill, stepped drill and reverse edge compound drill to analyze the variation rules of the thrust force, exit burr, exit delamination and tear with tool wear. Threshold values of exit delamination, tearing and critical thrust force were compared with each evaluation index one by one to study the causes of drills failure. The results indicated that the maximum tool wear position was the outer corner. Among the three types drills, the thrust force, delamination factor and burr angle of the reverse edge compound drill are smaller. The double point angle drill fails due to the excessive thrust force, while the stepped drill and the reverse edge compound drill fail due to the hole exit delamination exceeding the threshold. The number of drilled holes of the reverse edge compound drill is 100 % and 25 % higher than that of the double point angle drill and the stepped drill, respectively. Therefore, the reverse edge compound drill is suitable for drilling CFRP.

  相似文献   

8.
This paper highlights the development of micro long flat drills with nominal diameter and flute length of 20 μm and 200 μm, respectively, by precision grinding. Furthermore, it also covers the evaluation of the developed micro long flat drill in micro deep drilling. Micro long flat drills were made of ultra-fine grained cemented carbide containing WC particles with an average particle diameter of 90 nm. First, the study focused on establishing the optimal web thickness of micro long flat drill showing the best performance in micro deep drilling. In drilling experiment, observation was conducted with the aim of finding the best conditions and method of micro deep drilling into both duralumin and stainless steel workpieces. This observation included the applications of ultrasonic vibration (USV) and step feeding method. The study proved that there was an optimum web thickness resulting in the best drilling performance. Furthermore, the application of USV during drilling could lead to a longer tool life significantly. However, there was no improvement of drilling performance in drilling with step feeding.  相似文献   

9.
针对实际生产中出现的刀具寿命低、加工区域温度过高以及加工表面质量不好等问题,结合深孔加工技术的技术特点对现场加工状况的分析,找出影响寿命的原因;通过改进刀具几何参数、加工参数以及刀具制造工艺解决了刀具寿命问题,使寿命从原来每支100件提高到150件,并提高了加工质量以及加工效率。  相似文献   

10.
以外圆车削实验为依据,建立加工过程中刀具振动的非线性动力学模型,并采用数值分析方法,研究切削力中的动态分量对切削颤振的影响.结果表明,随速度变化的切削力分量对颤振幅值影响较小,而且会在短时间内被系统内的结构阻尼所衰减.而与加速度成非线性关系的切削力分量对颤振的影响却很显著,而且加速度系数有临界值存在,当超过这个临界值后,颤振的理论幅度将急剧增大.  相似文献   

11.
利用有限元技术对微细钻头超声轴向振动钻入横向偏移过程进行深入分析。结果表明,超声轴向振动钻削从根本上改变了普通钻削的钻入机理,减小了横向偏移量,提高了钻入定心精度,特别适合硬脆材料上的微小孔的精密和超精密加工。  相似文献   

12.
13.
14.
Due to complex cutting edge profile of an involute cutter, calculations of chip width and consequently cutting force are quite problematical. This article presents a mechanistic approach in the prediction of cutting force components arising in the course of gear tooth cutting by an involute form cutter. To permit calculation of chip width (and so cutting forces), a discrete model is utilized and cutting force components are then derived using Kienzle approach. Moreover, several experiments are performed under different cutting conditions to prove the effectiveness and accuracy of the used method. The results have revealed that cutting force components can be predicted in form gear tooth cutting with a significant accuracy.  相似文献   

15.
16.
Behavior of austenitic stainless steels has been studied at very high cutting speeds. Turning tests were carried out using the AISI 303 austenitic stainless steel. In particular, the influence of cutting speed on tool wear, surface quality, cutting forces and chip geometry has been investigated. These parameters have been compared when performing machining at traditional cutting speeds (lower than 350?m/min) versus high cutting speeds. The analysis of results shows that the material undergoes a significant change in its behavior when machining at cutting speeds above 450?m/min, that favors the machining operation. The main component of cutting forces reaches a minimum value at this cutting speed. The SEM micrographs of the machined surfaces show how at the traditional cutting speeds the machined surfaces contain cavities, metal debris and feed marks with smeared material particles. Surfaces machined at high cutting speeds show evidence of material side flow, which is more evident at cutting speeds above 600?m/min. Tool wear is located at the tool nose radius for lower cutting speeds, whereas it slides toward the secondary edge when cutting speed increases. An analysis of chips indicates also an important decrement in chip thickness for cutting speeds above 450?m/min. This study concludes that there is an unexplored range of cutting speeds very interesting for high-performance machining. In this range, the behavior of stainless steels is very favorable although tool wear rate is also significant. Nevertheless, nowadays the cost of tool inserts can be considered as secondary when comparing to other operation costs, for instance the machine hourly cost for high-end multitasking machines.  相似文献   

17.
18.
19.
In this paper, a series of milling tests were carried out in order to identify the effects of cutting speed on cutting forces and tool wear when high-speed face milling Inconel 718 with Sialon ceramic tools. Both down-milling and up-milling operations were conducted. The cutting forces, tool wear morphologies, and the tool failure mechanisms in a wide range of cutting speeds (600–3,000 m/min) were discussed. Results showed that the resultant cutting forces firstly decrease and then increase with the increase of cutting speed. Under relatively lower cutting speeds (600 and 1,000 m/min), the dominant wear patterns is notching. Further increasing the speed to more than 1,400 m/min, the notching decreases a lot and flank wear becomes the dominant wear pattern. In general, at the same cutting speed, flaking on the rake face and notching on the flank face are more serious in down-milling operation than that in up-milling operation with the same metal removal volume. However, the surface roughness values for down-milling are lower than that for up-milling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号