首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The varistor properties of the ZnO-Pr6O11-CoO-Cr2O3-Y2O3-In2O3 ceramics were investigated for different concentrations of In2O3. The increase of In2O3 concentration slightly increased the sintered density (5.60-5.63 g/cm3) and slightly decreased the average grain size (3.4-2.9 μm). The breakdown field increased from 6023 to 14822 V/cm with increasing concentration of In2O3. The nonlinear coefficient increased from 17.6 to 44.6 for up to 0.005 mol%, whereas the further doping caused it to decrease to 36.8. In2O3 acted as an acceptor due to the donor concentration, which decreases in the range of 1.02 × 1017 to 0.24 × 1017/cm3 with increasing concentration of In2O3.  相似文献   

2.
Ga2O3 nanowires grown on GaN-Ga2O3 core-shell nanoparticles were prepared through heat-treating GaN powder method which comprises a pre-nitridation process in the flow of N2 gas and a post-oxidation process in the air at 1200 °C. XRD and EDS patterns indicated that the heat-treated GaN powders were a powder mixture of GaN and Ga2O3. SEM, TEM, HRTEM and SAED images revealed that some nanowires that grow out from the edge of the GaN-Ga2O3 core-shell nanostructures with atomically smooth interfaces were monoclinic Ga2O3. Large blue-shifts in vibration frequency of Ga-N bonds observed in the FTIR spectrum could be contributed to size confinement effect and internal strains in GaN nanoparticles.  相似文献   

3.
We present the preparation of a semiconductor gas sensor based on ordered mesoporous In2O3. The In2O3 was synthesized by structure replication procedure from cubic KIT-6 silica. A detailed analysis of the morphology of the mesoporous powders as well as of the prepared sensing layer will be shown. Unique properties arise from the synthesis method of structure replication such as well defined porosity in the mesoporous regime and nanocrystallites with high thermal stability up to 450 °C. These properties are useful for the application in semiconducting gas sensors. Test measurements show sensitivity to methane gas in concentrations relevant for explosion prevention.  相似文献   

4.
In2O3 octahedrons were synthesized by carbothermal reduction method. The products were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDX), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction analysis (SAED) and room-temperature photoluminescence (PL) spectra. The results show that the products are single-crystalline In2O3 octahedrons with the arrises length in the range of 400-3000 nm. The PL spectra displays blue and green emission peaks which can be indexed to default and oxygen vacancies; blue-shift and intensity decrease was observed when excitation wavelength decreases from 380 nm to 325 nm. The growth mechanism of the In2O3 octahedrons is discussed.  相似文献   

5.
The fabrication of GaN on the surface of a bulk β-Ga2O3 single crystal by nitridation with NH3 was investigated for the purpose of using it as a substrate for GaN epitaxial growth. A β-Ga2O3 single crystal was prepared using a floating zone furnace with double ellipsoidal mirrors, and its polished (100) plane was nitridated in NH3 atmosphere at 850 °C for 5 h. It was found that hexagonal GaN with preferred in-plane orientation was produced on the surface of β-Ga2O3, and the thickness of nitride layers was approximately 50 nm. High resolution transmission electron microscopic observation indicated that the synthesized GaN was composed of the aggregation with single crystalline GaN particles, whose size ranged from ∼ 5 nm to ∼ 50 nm, and dislocation or defect was not observed in a GaN particle. This method could be expected as a new route to fabricate a substrate for epitaxial growth of III-nitride materials instead of using a bulk GaN single crystal.  相似文献   

6.
Influence of incorporation of Ga in amorphous In-Zn-O transparent conductive oxide films was investigated as a function of Zn/(Zn + In). For In-Zn-O films with no Ga2O3, the range of Zn/(Zn + In) ratio where the amorphous phase appears became narrow at a substrate temperature of 250 °C. With increasing Ga2O3 quantity, amorphous films were obtained even at a high substrate temperature of 250 °C in a wider range of Zn/(Zn + In) than that of In-Zn-O films with no Ga2O3. This means that the trend of crystallization at higher substrate temperature was disturbed with additional Ga incorporation. For the film deposited from ZnO:Ga (Ga2O3: 4.5-7.5 wt%) and In2O3 targets, we obtained a resistivity of 2.8 × 10−4 Ω cm, nearly the same value as that for an In-Zn-O film with no Ga2O3. The addition of more than 7.5 wt% Ga2O3 induced a widening of the optical band gap.  相似文献   

7.
The grain size and density of the sintered (Zn1 − xAlxO)mIn2O3 bodies decreased with the small Al2O3 content (≤ 0.012), and then increased gradually by further increasing the Al2O3 content. The addition of Al for Zn in the (ZnO)mIn2O3 led to an increase in both the electrical conductivity and the absolute value of the Seebeck coefficient. This indicates that the power factor was significantly enhanced by adding Al for Zn. The thermoelectric power factor was maximized to 1.67 × 10− 3 W m− 1 K− 2 at 1073 K for the (Zn0.992Al0.008O)mIn2O3 sample.  相似文献   

8.
In the present work, Ni doped In2O3 nanoparticles were prepared using simple co-precipitation method. From the x-ray diffraction analysis it is observed that all samples exhibit single phase polycrystalline nature. All the diffraction lines correspond to the bixbyite type cubic structure. A UV visible analysis reveals that optical band gap decreases from 4.63 to 3.84 eV with Ni doping. DC magnetization measurements reveal that Ni doped In2O3 nanoparticles exhibit room temperature ferromagnetism.  相似文献   

9.
Optical properties of In2O3 films prepared by spray pyrolysis   总被引:1,自引:0,他引:1  
In2O3 thin films have been deposited on glass substrates by spray pyrolysis. InCl4 was used as the solute to prepare the starting solution with a concentration of 0.1 M. The films were grown at different substrate temperatures ranging from 300 to 400 °C. The as-grown layers were optically characterized in order to evaluate the absorption coefficient, optical band gap, refractive index, extinction coefficient and other optical parameters. The influence of substrate temperature on these parameters was reported and discussed.  相似文献   

10.
GaN nanorods have been synthesized by ammoniating Ga2O3 films on a TiO2 middle layer deposited on Si(111) substrates. The products were characterized by X-Ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transformed infrared spectra (FTIR) and high-resolution transmission electron microscopy (HRTEM). The XRD analysis indicates that the crystallization of GaN film fabricated on TiO2 middle layer is rather excellent. The FTIR, SEM and HRTEM demonstrate that these nanorods are hexagonal GaN and possess a rough morphology with a diameter ranging from 200 nm to 500 nm and a length less than 10 μm, the growth mechanism of crystalline GaN nanorods is discussed briefly.  相似文献   

11.
The nanocrystalline powders of pure and La3+-doped In2O3 with cubic structure were prepared by a simple hydrothermal decomposition route. The structure and crystal phase of the powders were characterized by X-ray diffraction (XRD) and microstructure by transmission electron microscopy (TEM). All the compositions exhibited a single phase, suggesting a formation of solid solution in the concentration of doping investigated. Gas-sensing properties of the sensor elements were tested by mixing a gas in air at static state, as a function of concentration of dopant, operating temperature and concentrations of the test gases. The pure In2O3 exhibited high response towards H2S gas at an operating temperature 150 °C. Doping of In2O3 with La3+ increases its response towards H2S and La3+ (5.0 wt.% La2O3)-doped In2O3 showed the maximum response at 125 °C. The selectivity of the sensor elements for H2S against different reducing gases was studied. The results on response and recovery time were also discussed.  相似文献   

12.
Uniform single-crystalline In(OH)3 hollow microcubes have been synthesized in large quantities via a hydrothermal reaction of InCl3 with NaF and ethylene glycol (EG) at 140–220 °C for 12 h. Porous In2O3 hollow microcubes with a polycrystalline cubic structure can be obtained via calcining In(OH)3 precursors at 400 °C for 2 h in air. Controlled Synthesis of In(OH)3 and In2O3 hollow microcubes with the average edge lengths in the range of 2.0–4.7 μm can be achieved by changing the hydrothermal reaction temperature. The In(OH)3 hollow microcubes were formed via an EG-assisted oriented attachment growth route using HF bubbles as the templates. Photocatalytic activities of the as-synthesized porous In2O3 hollow microcubes were studied at room temperature. The results indicated that the hollow In2O3 nanostructures display high photocatalytic activity in the photodegradation of rhodamine B and methyl orange.  相似文献   

13.
Dan Liu  Yongping PuXuan Shi 《Vacuum》2012,86(10):1568-1571
A microwave ceramic with general composition (1-x-y) BaTiO3 + x Cr2Ti3O9 + y Bi2O3 has been prepared by solid state synthesis at 1300-1400 °C. The phase composition, perovskite structural parameters and dielectric properties have been obtained by X-ray diffraction and dielectric measurements as a function of chemical composition and temperature. At low doping levels the formation of BaTiO3-based solid solution has been found. The precipitation of BaCrO3 has been detected at x = y = 2.0 mol%. A model of the incorporation of Cr3+ and Bi3+ ions into BaTiO3-based crystal lattice has been proposed. Diffused phase transition in the temperature range 100-140 °C have been revealed by dielectric measurements for different ceramic composition. As high dielectric constant as 7311 and as low dielectric loss as 0.02 have been found for the composition of 0.98BaTiO3-0.01Cr2Ti3O9-0.01Bi2O3.  相似文献   

14.
Grazing incidence X-ray scattering (GIXS) using synchrotron radiation is a very useful method for structural analysis of amorphous films. We investigated the structure of amorphous In2O3 film utilizing GIXS at BL19B2 in SPring-8. Radial distribution function (RDF) was obtained from the measurement data. Structural models were constructed by molecular dynamics (MD) and reverse Monte-Carlo (RMC) simulations, and the calculated RDFs from the simulations were compared with that observed. It was found that the average oxygen coordination number around In ions was almost 6 and the average length 2.12 Å, which was smaller by about 3% than that of 2.18 Å in crystalline In2O3. It was concluded that the atomic arrangement of the amorphous In2O3 was characterized by the increase in the number and the boarder angle of distribution of corner-sharing In-O-In bond compared with crystalline In2O3.  相似文献   

15.
We report on the synthesis, structure and magnetic properties of a novel exchange bias system with Cr2O3/CrO2/Cr2O5 interfaces. Chromium oxide particles with mixed chromium valences were prepared by sintering CrO3 in air. X-ray diffraction patterns show that CrO3 lost its oxygen gradually with increasing temperature and time through Cr3O8, Cr2O5, CrO2, and finally Cr2O3 at temperatures above 760 K. X-ray photoelectron spectra indicate a low CrO2 content and a binding energy of 579.3 eV for Cr 2p3/2 photoelectrons in Cr2O5. Chromium dioxide was found to stably coexist with Cr2O3 and Cr2O5 in the particles. Magnetic measurements show hysteresis loop shifts in the sample, indicating an exchange bias induced by antiferromagnetic Cr2O3/Cr2O5 in ferromagnetic CrO2. An exchange bias of 9 mT at 5 K and a coercivity of 26.3 mT were observed in the chromium oxide particles containing CrO2.  相似文献   

16.
In the present study, Ni-modified α-Al2O3 with Ni/Al ratios of 0.3 and 0.5 were prepared by sol–gel and solvothermal method and then were impregnated with 0.3 wt.% Pd. Due to different crystallization mechanism of the two preparation methods used, addition of nickel during preparation of α-Al2O3 resulted in various species such as NiAl2O4, mixed phases between NiAl2O4 and α-Al2O3, and mixed phases between NiAl2O4 and NiO. As revealed by NH3-temperature programmed desorption, formation of NiAl2O4 drastically reduced acidity of alumina, hence lower amounts of coke deposited during acetylene hydrogenation was found for the Ni-modified α-Al2O3 supported catalysts. For any given method, ethylene selectivity was improved in the order of Pd/Ni–Al2O3-0.5 > Pd/Ni–Al2O3-0.3 > Pd/Ni–Al2O3-0  Pd/α–Al2O3-commercial. When comparing the samples prepared by different techniques, the sol–gel-made samples showed better performances than the solvothermal-derived ones.  相似文献   

17.
Gd2O3-WO3 complex ceramics are fabricated by the conventional solid-state reaction process. The electrical characteristics and dielectric properties of the samples were measured at various ambient temperatures in a low electric field (E < 150 V/mm). As the temperature increases, the dielectric constant and the loss tangent show an obvious change at about 50 °C and 330 °C. When the temperature is above 200 °C, the samples display stable nonlinear electrical properties characterized by semiconductivity, and the nonlinearity increases along with increasing temperature. XRD analysis reveals that Gd2W2O9 is the main phase and Gd2O3 is the secondary phase. Based on the phase transition of tungsten trioxide, these electrical properties of Gd2O3-WO3 complex ceramics can be simply explained.  相似文献   

18.
The influence of the molar ratio of Al2O3 to Y2O3 (i.e. MAl2O3/MY2O3) on sintering densification, microstructure and the mechanical properties of a SiC–Al2O3–Y2O3 ceramic composite were studied. It was shown that the optimal value of MAl2O3/MY2O3 was 3/2, not 5/3, which is customarily considered the optimal molar ratio for the formation of YAG (Y3Al5O12) phase. When MAl2O3/MY2O3 is 5/3, materials existed in two phases of YAG and very little YAM phases. The sintering mechanism of the solid phase occurred at 1850 °C. When MAl2O3/MY2O3 was 3/2, materials existed in the two phases YAG (Y3Al5O12) and YAM (Y4Al2O9). The formation of the low melting point eutectic liquid phase (YAG + YAM) increased sintering densification. Flexure strength, hardness and relative density were all higher.  相似文献   

19.
CaCu3Fe2Sb2O12 is mechanically stable, thermodynamically stable at pressures above 18 GPa. Both GGA and GGA + U methods predict that it is a ferrimagnetic semiconductor with Fe3+ in high spin state (S = 5/2). The coupling of Fe–Cu is antiferromagnetic, while that of Cu–Cu is ferromagnetic. The calculated total spin moment is 6.17 μB.  相似文献   

20.
Thin and densely packed In2O3 nanowires have been synthesised on alumina substrates via transport and condensation method, starting from nanoparticles of indium or palladium as catalysts for the condensation process. Indium catalyst promoted wires growth according to vapour-solid (VS) mechanism, while palladium catalyst leads to wires formation based on vapour-liquid-solid (VLS) condensation. Electron microscopy and related diffraction analysis demonstrated that the wires are monocrystalline, with atomically sharp termination of the lateral sides, and are free from extended defects. The sensing properties of nanowires bundles have been tested to acetone using the flow through technique in the temperature range between 100 and 500 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号