首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimal accuracy and precision in small-molecule profiling by mass spectrometry generally requires isotopically labeled standards chemically representative of all compounds of interest. However, preparation of mixed standards from commercially available pure compounds is often prohibitively expensive and time-consuming, and many labeled compounds are not available in pure form. We used a single-prototype uniformly labeled [U-(13)C]compound to generate [U-(13)C]-labeled volatile standards for use in subsequent experimental profiling studies. [U-(13)C]-α-Linolenic acid (18:3n-3, ALA) was thermally oxidized to produce labeled lipid degradation volatiles which were subsequently characterized qualitatively and quantitatively. Twenty-five [U-(13)C]-labeled volatiles were identified by headspace solid-phase microextraction-gas chromatography/time-of-flight mass spectrometry (HS-SPME-GC/TOF-MS) by comparison of spectra with unlabeled volatiles. Labeled volatiles were quantified by a reverse isotope dilution procedure. Using the [U-(13)C]-labeled standards, limits of detection comparable to or better than those of previous HS-SPME reports were achieved, 0.010-1.04 ng/g. The performance of the [U-(13)C]-labeled volatile standards was evaluated using a commodity soybean oil (CSO) oxidized at 60 °C from 0 to 15 d. Relative responses of n-decane, an unlabeled internal standard otherwise absent from the mixture, and [U-(13)C]-labeled oxidation products changed by up to 8-fold as the CSO matrix was oxidized, demonstrating that reliance on a single standard in volatile profiling studies yields inaccurate results due to changing matrix effects. The [U-(13)C]-labeled standard mixture was used to quantify 25 volatiles in oxidized CSO and low-ALA soybean oil with an average relative standard deviation of 8.5%. Extension of this approach to other labeled substrates, e.g., [U-(13)C]-labeled sugars and amino acids, for profiling studies should be feasible and can dramatically improve quantitative results compared to use of a single standard.  相似文献   

2.
Constant neutral loss (CNL) and precursor ion (PI) scan have been widely used for the in vitro screening of glutathione conjugates derived from reactive metabolites, but these two methods are only applicable to triple quadrupole or hybrid triple quadrupole mass spectrometers. Additionally, the success of CNL and PI scanning largely depends on structure and CID fragmentation pathways of GSH conjugates. In the present study, a highly efficient methodology has been developed as an alternative approach for high-throughput screening and structural characterization of reactive metabolites using the linear ion trap mass spectrometer. In microsomal incubations, a mixture of glutathione [GSH, gamma-glutamyl-cystein-glycin] and the stable-isotope labeled compound [GSX, gamma-glutamyl-cystein-glycin-(13)C2-(15)N] was used to trap reactive metabolites, resulting in formation of both labeled and unlabeled conjugates at a given isotopic ratio. A mass difference of 3.0 Da between the natural and labeled GSH conjugate (mass tag) at a fixed isotopic ratio constitutes a unique mass pattern that can selectively trigger the data-dependent MS(2) scan of both isotopic partner ions, respectively. In order to eliminate the response bias of GSH adducts in the positive and negative mode, a polarity switch is executed between the mass tag-triggered data dependent MS(2) scan, and thus ESI- and ESI+ MS(2) spectra of both labeled and nonlabeled GSH conjugates are obtained in a single LC-MS run. Unambiguous identification of glutathione adducts was readily achieved with great confidence by MS(2) spectra of both labeled and unlabeled conjugates. Reliability of this method was vigorously validated using several model compounds that are known to form reactive metabolites. This approach is not based on the appearance of a particular product ion such as MH(+) - 129 and anion at m/z 272, whose formation can be structure-dependent and sensitive to the collision energy level; therefore, the present method can be suitable for unbiased screening of any reactive metabolites, regardless of their CID fragmentation pathways. Additionally, this methodology can potentially be applied to triple quadrupole or hybrid triple quadrupole mass spectrometers.  相似文献   

3.
Xu Y  Brenna JT 《Analytical chemistry》2007,79(6):2525-2536
We report a method to elucidate the structure of triacyl-glycerols (TAGs) containing monoene or diene fatty acyl groups by atmospheric pressure covalent adduct chemical ionization (APCACI) tandem mass spectrometry using acetonitrile as an adduct formation reagent. TAGs were synthesized with the structures ABB and BAB, where A is palmitate (C16:0) and B is an isomeric C18 monoene unsaturated at position 9, 11, or 13 or an isomeric diene unsaturated at positions 9 and 11, 10 and 12, or 9 and 12. In addition to the species at m/z 54 observed in previous CI studies of fatty acid methyl esters, we also found that ions at m/z 42, 81, and 95 undergo covalent reaction with TAGs containing double bonds to yield ions at m/z 40, 54, 81, and 95 units greater than that of the parent TAG: [M + 40]+, [M + 54]+, [M + 81]+, and [M + 95]+ ions. When collisionally dissociated, these ions fragment to produce two or three diagnostic ions that locate the double bonds in the TAG. In addition, ions [RCH=C=O + 40]+ and [RCH=C=O + 54]+ formed from collisional dissociation are of strong abundance in MS/MS spectra, and collisional activation of these ions produces two intense confirmatory diagnostic ions in the MS3 spectra. Fragment ions reflecting neutral loss of an sn-1-acyl group from [M + 40]+ and [M + 54]+ are more abundant than those reflecting neutral loss of an sn-2-acyl group, analogous to previous reports for protonated TAGs. The position of each acyl group on the glycerol backbone is thus determined by the relative abundances of these ions. Under the conditions in our instrument, the [M + 40]+ adduct is at the highest signal and also yields all information about the double bond position and TAG stereochemistry. With the exception of geometries about the double bonds, racemic TAG isomers containing two monoenes or dienes and a saturate can be fully characterized by APCACI-MS/MS/MS.  相似文献   

4.
A multiple ionization mass spectrometry strategy is presented based on the analysis of human serum extracts. Chromatographic separation was interfaced inline with the atmospheric pressure ionization techniques electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in both positive (+) and negative (-) ionization modes. Furthermore, surface-based matrix-assisted laser desorption/ionization (MALDI) and desorption ionization on silicon (DIOS) mass spectrometry were also integrated with the separation through fraction collection and offline mass spectrometry. Processing of raw data using the XCMS software resulted in time-aligned ion features, which are defined as a unique m/z at a unique retention time. The ion feature lists obtained through LC-MS with ESI and APCI interfaces in both +/- ionization modes were compared, and unique ion tables were generated. Nonredundant, unique ion features, were defined as mass numbers for which no mass numbers corresponding to [M + H](+), [M - H](-), or [M + Na](+) were observed in the other ionization methods at the same retention time. Analysis of the extracted serum using ESI for both (+) and (-) ions resulted in >90% additional unique ions being detected in the (-) ESI mode. Complementing the ESI analysis with APCI resulted in an additional approximately 20% increase in unique ions. Finally, ESI/APCI ionization was combined with fraction collection and offline-MALDI and DIOS mass spectrometry. The parts of the total ion current chromatograms in the LC-MS acquired data corresponding to collected fractions were summed, and m/z lists were compiled and compared to the m/z lists obtained from the DIOS/MALDI spectra. It was observed that, for each fraction, DIOS accounted for approximately 50% of the unique ions detected. These results suggest that true global metabolomics will require multiple ionization technologies to address the inherent metabolite diversity and therefore the complexity in and of metabolomics studies.  相似文献   

5.
The main advantage of the APCI interface for the LC-MS analysis of synthetic polymers resides in its compatibility with the main chromatographic modes: reversed-phase liquid chromatography, normal-phase liquid chromatography, and size exclusion chromatography in organic phase, with the usual flow rates. Moreover, APCI can be used in positive or negative modes. Representative applications are described to highlight benefits and limitations of the LC-APCI-MS technique with the analysis of industrial polymers up to molecular masses of 5 kDa: polyethers; polysiloxanes; and copolymers of siloxanes. Results are discussed in regard to those obtained by more classical techniques: SEC and MALDI-MS. The use of an APCI interface in LC-MS and SEC-MS coupling applied to synthetic polymers is efficient up to 2000-4500 Da. The main drawback of the APCI interface is the in-source decomposition that is observed above m/z = 2000-3000 and can induce an underestimation of average molecular weights. However, APCI allows detection on a wide range of polarity of sample/solvent and appears to be complementary to ESI.  相似文献   

6.
Deuterium-labeled cholesterol is used to monitor for artifactually produced cholesterol oxidation products during analysis. [2H9]Cholesterol, labeled on the side chain, is added to the sample immediately upon isolation, and the ratios of labeled to unlabeled oxides and of labeled to unlabeled cholesterol are monitored by capillary gas chromatography-mass spectrometry. The analytical methodology involves an initial solvent extraction followed by silica gel LC and reversed-phase HPLC to isolate and concentrate the oxide fraction. The feasibility of the technique for analysis of cholesterol oxides in foods and biological samples at the part per million level with an accuracy of better than +/- 5% is demonstrated.  相似文献   

7.
We have developed a complete system for the isotopic labeling, fractionation, and automated quantification of differentially expressed peptides that significantly facilitates candidate biomarker discovery. We describe a new stable mass tagging reagent pair, (12)C(6)- and (13)C(6)-phenyl isocyanate (PIC), that offers significant advantages over currently available tags. Peptides are labeled predominantly at their amino termini and exhibit elution profiles that are independent of label isotope. Importantly, PIC-labeled peptides have unique neutral-mass losses upon CID fragmentation that enable charge state and label isotope identification and, thereby, decouple the sequence identification from the quantification of candidate biomarkers. To exploit these properties, we have coupled peptide fractionation protocols with a Thermo LTQ-XL LC-MS(2) data acquisition strategy and a suite of automated spectrum analysis software that identifies quantitative differences between labeled samples. This approach, dubbed the PICquant platform, is independent of protein sequence identification and excludes unlabeled peptides that otherwise confound biomarker discovery. Application of the PICquant platform to a set of complex clinical samples showed that the system allows rapid identification of peptides that are differentially expressed between control and patient groups.  相似文献   

8.
The kinetics and product distributions of the reactions of dimethyl disulfide (DMDS) have been investigated with a group of chemical background ions commonly observed in atmospheric pressure ionization (API) mass spectrometry (MS) in order to assess the value of this molecule in filtering (or "scrubbing") these ions by changing their mass/charge (m/z) ratio. The measurements were taken with a novel electrospray ionization/selected ion flow tube/QqQ tandem mass spectrometer. The background ions studied include those with m/z 42 (protonated acetonitrile, ACN), 83 (protonated ACN dimer), 99 (protonated phosphoric acid), 117 (water cluster of m/z 99), 131 (methanol cluster of m/z 99), 149 (protonated phthalic anhydride, formed from the phthalates), and 327 (protonated triphenyl phosphate). In addition, reactions of DMDS have been studied with two model analytes--protonated caffeine and doubly protonated bradykinin--in order to assess the selectivity of DMDS reactivity. All the measurements were taken at 295 +/- 2 K in helium buffer gas at a pressure of 0.35 +/- 0.01 Torr. DMDS was observed to react efficiently with m/z 42 (ACNH+), 149 (from phthalates), and 99 (protonated phosphoric acid), with k/kc=0.91, 0.47, and 0.38, respectively. Only proton transfer was observed with ACNH+, followed by the secondary reaction of [DMDSH]+ with DMDS to yield [CH3S-S(CH3)-SCH3]+. Ligation of DMDS was the dominant primary channel observed for the reaction of the m/z 149 background ion; however, some proton transfer also was observed. Both of these primary product ions react further with DMDS to yield [CH3S-S(CH3)-SCH3]+, the structure of which we have determined computationally using DFT calculations. Only the sequential ligation with two DMDS molecules was observed for the reaction of the m/z 99 ion. Reactions of DMDS with m/z 117 [H3PO4 + H + H2O]+ and m/z 131 [H3PO4 + H + MeOH]+ were observed to proceed with k/kc=0.71 and 0.058, respectively. Ligand substitution of DMDS for H2O predominated ( approximately 94%) over DMDS ligation ( approximately 6%) in the reaction with m/z 117, while only DMDS ligation was observed for the reaction of m/z 131 with DMDS. In contrast, the reactions of DMDS with ions of m/z 83 (protonated dimer of ACN) and 327 (protonated triphenyl phosphate) were extremely inefficient, with k/kc=0.0042 and 0.0079, respectively. The higher reactivity of DMDS toward ACNH+ (m/z 42) compared to (ACN)2H+ (m/z 83) is attributed to the lower proton affinity of the unsolvated ACN. The reactivity of DMDS toward the two model analyte ions studied-protonated caffeine and doubly protonated bradykinin-was negligible, with k/kc=0.0073 and 0.010, for the respective reactions. These results suggest that, under appropriate reagent pressure conditions, DMDS can be an appropriate reagent for chemically filtering out many common API-MS background ions, without significantly affecting the observed intensity of analyte peaks.  相似文献   

9.
Mass spectrometry and tandem mass spectrometry of citrus limonoids   总被引:2,自引:0,他引:2  
Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring structure. CAD of the adduct ion [M + H + NH3]+ of limonoid glucosides produced the aglycone moiety corresponding to each glucoside. The combination of mass spectrometry and tandem mass spectrometry provides a powerful technique for identification and characterization of citrus limonoids.  相似文献   

10.
An isotope dilution mass spectrometric (ID/MS) method for cholesterol is described that uses capillary gas chromatography with cholesterol-13C3 as the labeled internal standard. Labeled and unlabeled cholesterol are converted to the trimethylsilyl ether. Combined capillary column gas chromatography and electron impact mass spectrometry are used to obtain the abundance ratio of the unlabeled and labeled [M+.] ions from the derivative. Quantitation is achieved by measurement of each sample between measurements of two standards whose unlabeled/labeled ratios bracket that of the sample. Seven pools were analyzed by this method: standard reference material (SRM) 1951, which consists of three frozen serum pools with low, medium, and high levels of cholesterol; SRM 1952, which consists of three freeze-dried serum pools with low, medium, and high levels of cholesterol; and SRM 909, a freeze-dried serum pool. The method is a modification of our original definitive method for cholesterol. The modified method uses much better chromatographic separations to assure specificity and a new method of implementing selected ion monitoring on a magnetic mass spectrometer to obtain high-precision measurements of ion intensity ratios on narrow gas chromatographic peaks. The modified method has a coefficient of variation (CV) of 0.22%, which is an improvement over the original method's CV of 0.36%. The measurements were found to be free of interference. The high precision and absence of bias qualify this method as a candidate definitive method.  相似文献   

11.
Four oligonucleotides (fluorescently labeled and unlabeled 16- and 90-mer), each containing a single adduct of benzo[a]pyrene diol epoxide (BPDE), were synthesized and used to study the binding stoichiometry between the DNA adduct and its antibody. The free oligonucleotide and its complexes with mouse monoclonal antibody were separated using capillary electrophoresis and detected with laser-induced fluorescence (LIF). Two complexes, representing the 1:1 and 1:2 stoichiometry between the antibody and the DNA adduct, were clearly demonstrated. The stoichiometry depended upon the relative concentrations of the antibody and the DNA adducts. A new approach examining the binding of the antibody with a mixture of a tetramethylrhodamine (TMR)-labeled and unlabeled BPDE-16-mer revealed insights on ligand redistribution and exchange between the labeled and unlabeled BPDE-16-mer oligonucleotides in the complexes. The observation of this unique behavior has not been possible previously with other binding studies. A mixture of the antibody with the TMR-labeled BPDE- 16-mer and an unlabeled BPDE-90-mer further revealed the formation of three fluorescent complexes: antibody with one TMR-BPDE-16-mer molecule, antibody with two TMR-BPDE- 16-mer molecules, and antibody with one TMR-BPDE-16-mer and one BPDE-90-mer. The three complexes clearly demonstrated binding stoichiometry and ligand redistribution/exchange.  相似文献   

12.
A reversed-phase high-performance liquid chromatography-mass spectrometry (LC-MS) method is described for the separation and simultaneous analysis of porphyrins related to disorders of heme biosynthesis (uro-, heptacarboxylic, hexacarboxylic, pentacarboxylic, and coproporphyrins). The method involves initial porphyrin esterification and extraction from urine. Detection and quantification is performed from the extracts by separation with a Hypersil BDS column and on-line detection by MS through coupling with an atmospheric pressure chemical ionization interface. The porphyrin esters are detected as protonated molecules [M + H]+. Their mass spectra also exhibit an [M + Na]+ fragment of lower intensity. The analytical performance of this method is compared with those of LC with UV and fluorescence detection. LC-MS used in selective [M + H]+ ion monitoring provides the lowest detection and quantitation limits. In scan mode, this LC-MS method affords, without further isolation or concentration steps, the measurement of mass spectra of unknown compounds present in the urine of patients with altered porphyrin excretion.  相似文献   

13.
While investigating the in-source CID fragmentation of nonsteroidal antiinflammatory drugs (NSAIDs), it was noticed that the same fragment ion (nominal mass) formed in either positive or negative ion electrospray for a suite of NSAIDs. For example, ibuprofen with a molecular mass of 206, fragments to the m/z 161 ion in negative ion from its deprotonated molecule (m/z 205, [M - H]-) and fragments to the m/z 161 ion in positive ion from its protonated molecule (m/z 207, [M + H]+). This fragment ion was euphemistically called a "twin ion"because of the same nominal mass despite opposite charge. The CID fragmentation of the twin ions was confirmed also by LC/MS/MS ion trap. Accurate mass measurements in negative ion show that the loss was due to CO2 (measured loss of 43.9897 atomic mass units (u) versus calculated loss of 43.9898 u for N = 10) and in positive ion the loss is due to HCOOH (measured loss of 46.0048 u versus calculated loss of 46.0055 u, N = 10). It was realized that, in fact, the ions were not "identical mass twins of opposite charge" but separated in accurate mass by two electrons. The accurate mass measurement by liquid chromatography/time-of-flight-mass spectrometry (LC/TOF-MS) can distinguish between the two fragment ions of ibuprofen (161.13362 +/- 0.00019 and 161.13243 +/- 0.00014 for N = 20). This experiment was repeated for two other NSAIDs, and the mass of an electron was measured as the difference between the twin ions, which was 0.00062 u +/- 14.8% relative standard deviation (N = 20 analyses). Thus, the use of continuous calibration makes it possible to measure the mass of an electron within one significant figure using the NSAID solution. This result shows the importance of including electron mass in accurate mass measurements and the value of a benchmark test for LC/TOF-MS mass accuracy.  相似文献   

14.
We compare electron capture dissociation (ECD) of doubly protonated and divalent metal-adducted tyrosine O-sulfated peptides without basic amino acid residues. ECD of doubly protonated Tyr2-sulfated cholecystokinin (CCKS) and doubly protonated Tyr12-sulfated gastrin II (GST) resulted in complete loss of SO3 from all product ions. Thus, contrary to typical ECD behavior, localization of the sulfate groups was not possible. By contrast, ECD of Ca-, Mn-, Zn-, and Fe-adducted CCKS and ECD of deprotonated GST with two calcium adducts, i.e., [GST + 2Ca - H]3+, resulted in sulfated c'- and z.-type product ions with high sequence coverage, thereby allowing both sequencing and sulfate localization. In addition, divalent metal adduction provided improved positive mode ionization efficiency for these peptides. The drastically different fragmentation behavior observed in ECD of protonated and metal-adducted CCKS and GST, respectively, is proposed to be a consequence of the absence of basic amino acid residues, promoting a mobile proton-like fragmentation mechanism, including abundant sulfate loss, for protonated species. Retention of sulfate groups was also observed in electron detachment dissociation (EDD) of CCKS and GST. However, the EDD fragmentation efficiency was much lower than that of ECD and very limited fragmentation was observed in EDD of GST, precluding localization of the sulfate group in that peptide.  相似文献   

15.
2-[2-(4-(Dibenzo[b, f][1,4]thiazepin-11-yl)piperazin-1-yl)ethoxy]ethanol (Quetiapine) labeled with 14C in 11-position was synthesized in five steps from [carboxy-14C]anthranilic acid. The key precursor of the target product is [11-14C]dibenzothiazepin-11(10H)-one. The reaction is performed as one-pot process.  相似文献   

16.
A comprehensive method was developed to simultaneously separate and detect perfluorinated acid (PFA) and PFA-precursor isomers using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A linear perfluorooctyl stationary phase and acidified mobile phase increased separation efficiency, relative to alkyl stationary phases, for the many perfluoroalkyl carboxylate (PFCA), perfluoroalkyl sulfonate (PFSA), and perfluorooctyl sulfonamide (PFOSA) isomers and in combination with their distinct MS/MS transitions allowed full resolution of most isomers in standards. Utilizing the absence of the "9-series" and "0-series" product ions, several perfluorooctane sulfonate (C8F17SO3-, PFOS) isomers were structurally elucidated. In human serum, only perfluorooctane sulfonamide (C8F17SO2NH2, FOSA) and PFOS consisted of significant quantities of branched isomers, whereas PFCAs were predominantly linear. Interferences that coelute with the m/z 499 --> 80 transition of PFOS on alkyl stationary phases were simultaneously separated and identified as taurodeoxycholate isomers, removal of which permitted the use of the more sensitive m/z 80 product ion and a resulting 20-fold decrease in PFOS detection limits compared to the m/z 499 --> 99 transition (0.8 pg versus 20 pg using m/z 80 and 99, respectively). Interferences in human serum which caused a 10-20-fold over-reporting of perfluorohexane sulfonate (C6F13SO3-, PFHxS) concentrations on alkyl stationary phases were also simultaneously separated from linear PFHxS and identified as endogenous steroid sulfates. PFOSA isomers, generated with human microsomes, had different rates of metabolism, suggesting that the perfluoroalkyl branching pattern may affect the biological properties of individual isomers. This fact, and for reasons of improved accuracy and sensitivity, investigators are urged to utilize more efficient separation methods capable of isomer characterization in perfluoroalkyl research.  相似文献   

17.
A series of dithienosilole-based copolymers, poly [(4,4'-bis(2-hexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-5,5'-diyl] (P1), poly[(4,4'-bis(2-hexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,2'-bithiazole)-5,5'-diyl] (P2), poly[(4,4'-bis(2-hexyl)dithieno[3,2-b:2',3'-d]silole)-2, 6-diyl-alt-(10 -methyl-phenothiazine)-3,7-diyl](P3), poly[(4,4'-bis(2-hexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-9,10-anthracene)-5,5'-diyl] (P4) were synthesized by the Pd-catalyzed Stille polymerization method. Electron-deficient benzothiadiazole and bithiazole units and electron-rich phenothiazine and anthracene moieties were incorporated into the polymer backbone to obtain the broad absorption spectrum and to improve the hole-transporting characteristics, respectively. The polymer solar cell (PSC) was fabricated with a layered structure of ITO/PEDOT:PSS/polymer:C71-PCBM (1:3)/LiF/Al. The best performance of PSC was obtained at P3:C71-PCBM which reaches a power conversion efficiency (PCE) of 1.18%, with a short circuit current density (J(sc)) of 4.75 mA/cm2, an open circuit voltage (V(oc)) of 0.71 V, and a fill factor (FF) of 0.35 under AM 1.5G irradiation (100 mW/cm2).  相似文献   

18.
We describe a novel nonradioactive protein-labeling technique that permits mass spectrometric identification of fragments of labeled proteins. Proteins are labeled by modulating their content of carbon-13 and labeled fragments identified from the distinctive isotope pattern observed on MALDI-TOF mass spectrometry. We show that carbon-13 enrichment to just 2.3% of total carbon (about twice the natural abundance of 1.1%) is sufficient for all fragments to be distinguishable from fragments of natural carbon-13-content proteins. Distinguishing labeled fragments is easily accomplished by visual inspection of spectra, but importantly, we show that labeled fragments can also be identified by computer analysis of spectra using novel parameters we have derived. The technique is demonstrated for identification of fragments of carbon-13-enriched glutathione transferase within a complex mixture of unlabeled peptides by visual and computer analysis of MALDI-TOF mass spectra, but it could be developed to mass spectrometrically identify and characterize fragments of labeled proteins recovered from biological systems.  相似文献   

19.
Radiochemistry - Synthesis, IR spectroscopic and X-ray structural studies of new chlorine-containing uranyl complexes (C10H16N)2[UO2Cl4] (I) and (C13H22N)2[UO2Cl4]0.5[UO2(NO3)2Cl2]0.5 (II) have...  相似文献   

20.
We show that highly charged ions can be generated if a pulsed infrared laser and a glycerol matrix are employed for atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry with a quadrupole ion trap. Already for small peptides like bradykinin, doubly protonated ions form the most abundant analyte signal in the mass spectra. The center of the charge-state distribution increases with the size of the analyte. For example, insulin is detected with a most abundant ion signal corresponding to a charge state of four, whereas for cytochrome c, the 10 times protonated ion species produces the most intense signal. Myoglobin is observed with up to 13 charges. The high m/z ratios allow us to use the Paul trap for the detection of MALDI-generated protein ions that are, owing to their high molecular weight, not amenable in their singly protonated charge state. Formation of multiple charges critically depends on the addition of diluted acid to the analyte-matrix solution. Tandem mass spectra generated by collision-induced dissociation of doubly charged peptides are also presented. The findings allow speculations about the involvement of electrospray ionization processes in these MALDI experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号