首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Isothermal pseudo-binary phase studies of the systems EuF2:YF3 and EuF2:GdF3 have been completed at 1100°C. Three single phase regions corresponding to (1) EuF3(ss); (a) hexagonal tysonite and (3) orthorhombic LnF3(ss), Ln = Y, Gd, have been found. The single phase regions for both of these systems are similar and exist at 0–39, 73–82 and 91–100 mole % YF3; 0–41, 70–77 and 85–100 mole % GdF3.  相似文献   

2.
YF3 with different crystalline phases and morphologies have been prepared via a facile hydrothermal route assisted by imidazolium ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate (C4mimBF4) or 1-butyl-3-methylimidazolium hexafluorophosphate (C4mimPF6). The microstructures and morphologies of YF3 particles were characterized by X-ray powder diffraction, X-ray photoelectron spectra (XPS), transmission electron microscopy (TEM), high resolution electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). Cubic and orthorhombic YF3 were selectively synthesized by adjusting the molar ratio of the reagents and using C4mimBF4 as the fluoride source, while only orthorhombic YF3 was obtained using C4mimPF6, indicating that the crystalline phases and morphologies of the products were significantly influenced by fluoride source and reaction media.  相似文献   

3.
Two new cation-deficient hexagonal perovskites Ba4LaMNb3O15 (M = Ti, Sn) ceramics were prepared by high temperature solid-state reaction route. The phase and structure of the ceramics were characterized by X-ray diffraction, scanning electron microscopy (SEM). The microwave dielectric properties of the ceramics were studied using a network analyzer. The Ba4LaTiNb3O15 has high dielectric constant of 52, high quality factors (Q) 3500 (at 4.472 GHz), and temperature variation of resonant frequency (τf) +93 ppm °C−1 at room temperature; Ba4LaSnNb3O15 has dielectric constant of 39 with high Q value of 2510 (at 5.924 GHz), and τf −29 ppm °C−1.  相似文献   

4.
A borate compound was adopted as a new host material of Eu3+ and Tb3+ activators to fabricate efficient luminescence materials. The phosphor compositions, Gd1−xEuxCa3(GaO)3(BO3)4 and Gd1−xTbxCa3(GaO)3(BO3)4, were synthesized by conventional solid-state reactions. The crystalline phases of the resulting powders were identified using an X-ray diffraction system. Their photoluminescence properties were investigated under long-wavelength UV excitation. The Eu3+-doped and Tb3+-doped GdCa3(GaO)3(BO3)4 phosphors efficiently emitted red and green light, respectively. The temperature dependency of emission intensity was measured in a range from room temperature to 150 °C. The emission intensities of the red and green phosphors at 150 °C are 87% and 91% of those at room temperature, respectively. In addition, the decay times of both the red and green phosphors are shorter than 3 ms.  相似文献   

5.
New quenched-in fluorite-type materials with composition (BiO1.5)0.94−x(LaO1.5)0.06(PbO)x, x = 0.02, 0.03, 0.04 and 0.05, were synthesised by solid state reaction. The new materials undergo a number of phase transformations during heating between room temperature and 750 °C, as indicated by differential thermal analysis. Variable temperature X-ray diffraction performed on the material (BiO1.5)0.92(LaO1.5)0.06(PbO)0.02 revealed that the quenched-in fcc fluorite-type material first undergoes a transformation to a β-Bi2O3-type tetragonal phase around 400 °C. In the range 450-700 °C, α-Bi2O3-type monoclinic, Bi12PbO19-type bcc and β12-type rhombohedral phases, and what appeared to be a ?-type monoclinic phase, were observed, before a single-phase fluorite-type material was regained at 750 °C.  相似文献   

6.
The present work reports the effects caused by barium on phase formation, morphology and sintering of lead magnesium niobate-lead titanate (PMN-50PT). Ab initio study of 0.5Pb(Mg1/3Nb2/3)O3-0.5(BaxPb(1−x)TiO3) ceramic powders, with x = 0, 0.20, and 0.40 was proposed, considering that the partial substitution of lead by barium can reestablish the equilibrium of monoclinic-tetragonal phases in the system. It was verified that even for 40 mol% of barium, it was possible to obtain pyrochlore-free PMN-PT powders. The increase of the lattice parameters of PMN-PT doped-powders confirmed dopant incorporation into the perovskite phase. The presence of barium improved the reactivity of the powders, with an average particle size of 120 nm for 40 mol% of barium against 167 nm for the pure sample. Although high barium content (40 mol%) was deleterious for a dense ceramic, contents up to 20 mol% allowed 95% density when sintered at 1100 °C for 4 h.  相似文献   

7.
The structural, electrical, dielectric, magnetic and magnetoelectric properties of (x)Ni0.8Zn0.2Fe2O4 + (1 − x)Pb0.93La0.07(Zr0.60Ti0.40)O3 (x = 0, 0.15, 0.30, 0.45 and 1) have been studied by means of various experimental techniques. Polycrystalline samples of this series have been prepared by the double sintering ceramic method. X-ray diffraction data analysis revealed purity of the composites. Microstructural analysis using scanning electron microscopy mode depicts the presence of two phases in contact with each other. Dielectric properties were studied at and well above room temperature. Temperature dependent variation of the dielectric constant show diffused phase transition which can be well described by fitting the Lorentz-type relation, . Observation of well-saturated ferroelectric hysteresis loop and magnetic hysteresis loop for composites indicates that ferroelectric and magnetic ordering exist simultaneously at room temperature. The static value of magneto electric voltage coefficient (αE) has been studied as a function of magnetic field at room temperature for all the composites. The maximum value of αE is 7.53 mV/(cm Oe) for 85% PLZT-15% NZFO composites.  相似文献   

8.
YF3 crystalline particles with different crystal structures and different morphologies have been synthesized via a simple solution route by varying the fluoride source (NH4F, HF, NH4F·HF) and molar ratio of Y3+/F at room temperature. They were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray photoelectron spectrum (XPS).  相似文献   

9.
Cu2O(SeO3) has been synthesized in supercritical hydrothermal conditions, using an externally heated steel reactor with coupled hydraulic pump for the application of high pressure. The compound crystallizes in the P213 cubic space group. The unit cell parameter is a = 9.930(1) Å with Z = 12. The crystal structure has been refined by the Rietveld method. The limit of thermal stability is, approximately, 490 °C. Above this temperature the compound decomposes to SeO2(g) and CuO(s). The IR spectrum shows the characteristic bands of the (SeO3)2− oxoanion. In the diffuse reflectance spectrum two intense absorptions characteristic of the Cu(II) cations in five-coordination are observed. The ESR spectra are isotropic from room temperature to 5 K, with g = 2.11(2). The thermal evolution of the intensity and line width of the signals suggest a ferromagnetic transition in the 50-45 K range. Magnetic measurements, at low temperatures, confirm the existence of a ferromagnetic transition with a critical temperature of 55 K.  相似文献   

10.
Three high temperature structural phase transitions have been identified in the perovskite-structured phase SrSnO3 using differential scanning calorimetry and dilatometry, and have subsequently been structurally characterised using high-resolution neutron powder diffraction. Between 298 and 905 K, SrSnO3 is orthorhombic, space group Pmcn before undergoing a continuous phase transition to a second orthorhombic phase in space group Incn. At 1062 K there is a first order phase transition to a tetragonal phase in space group I4/mcm before finally transforming to the aristotype phase at 1295 K. Using the magnitude of the anti-phase tilt as a measure of the order parameter for the transition from I4/mcm to suggests this transition is tricritical in nature. Crystal structures are reported for the three hettotype phases.  相似文献   

11.
High-pressure X-ray diffraction and Raman studies on holmium sesquioxide (Ho2O3) have been carried out up to a pressure of ∼17 GPa in a diamond-anvil cell at room temperature. Holmium oxide, which has a cubic or bixbyite structure under ambient conditions, undergoes an irreversible structural phase transition at around 9.5 GPa. The high-pressure phase has been identified to be low symmetry monoclinic type. The two phases coexist to up to about 16 GPa, above which the parent phase disappears. The high-pressure laser-Raman studies have revealed that the prominent Raman band ∼370 cm−1 disappears around the similar transition pressure. The bulk modulus of the parent phase is reported.  相似文献   

12.
Relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) and 10% PbZrO3-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) ceramics were both prepared by a modified precursor method, which was based on the high-temperature synthesis of an oxide precursor that contained all the B-site cations for the consideration of B-site homogeneity. The dielectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) ceramic was more of normal ferroelectric behavior, but the high dielectric constant (?m = 34,200 at 1 kHz) and piezoelectric constant (d33 = 709 pC/N) were observed for this composition close to the morphotropic phase boundary. Comparatively, introduction of 10% PbZrO3 into Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) ceramics enhanced the diffuse phase transition as well as the rhombohedral to tetragonal phase transition temperature, while it also kept the high dielectric constant (?m = 29,600 at 1 kHz) and piezoelectric constant (d33 = 511 pC/N).  相似文献   

13.
10 mol% Pb(Fe1/2Nb1/2)O3 (PFN) modified Pb(Mg1/3Nb2/3)O3-PbZr0.52Ti0.48O3 (PMN-PZT) relaxor ferroelectric ceramics with compositions of (0.9 − x)PMN-0.1PFN-xPZT (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) were prepared. X-ray diffraction investigations indicated that as-prepared ceramics were of pure perovskite phase and the sample with composition of x = 0.8 was close to morphotropic phase boundary (MPB) between rhombohedral and tetragonal phase. Dielectric properties of the as-prepared ceramics were measured, and the Curie temperature (Tc) increased sharply with increasing PZT content and could be higher than 300 °C around morphotropic phase boundary (MPB) area. At 1 kHz, the sample with composition of x = 0.1 had the largest room temperature dielectric constant ?r = 3519 and maximum dielectric constant ?m = 20,475 at Tm, while the sample with composition of x = 0.3 possessed the maximum dielectric relaxor factor of γ = 1.94. The largest d33 = 318 pC/N could be obtained from as-prepared ceramics at x = 0.9. The maximum remnant polarization (Pr = 28.3 μC/cm2) was obtained from as-prepared ceramics at x = 0.4.  相似文献   

14.
The olive-like YF3 micro-particles were fabricated via a two-step route. The precursor NH4Y3F10 nano-cages sized 8 nm with hollow interiors were first synthesized in a solid reaction at room temperature. In the course of subsequent hydrothermal treating, the unstable NH4Y3F10 nano-cages were decomposed, resulted in the formation of Y(OH)1.63F1.37 micro-tubes. Prolonging the hydrothermal reaction induced the further decomposition of Y(OH)1.63F1.37 to produce YF3 nano-crystals, which then aggregated together forming the final olive-like YF3 micro-particles. For the Er3+/Yb3+ co-doped olive-like YF3 micro-particles, intense visible upconversion emissions were measured under 976 nm excitation owing to the partition of rare earth ions in the lattice, indicating this material a promising luminescent host.  相似文献   

15.
(K0.5Bi0.5)TiO3-BiScO3-PbTiO3 ceramics were synthesized by conventional solid-state method. A morphotropic phase boundary (MPB) was confirmed with the aid of structural analysis. Two dielectric anomalous peaks were observed, the one around dielectric maximum temperature (Tm) due to phase transformation from ferroelectric to paraelectric while the second one could be ascribed to space charges. Furthermore, the existence of space charges also resulted in the independence of Tm with frequency at low lead composition. A new high temperature piezoelectric ceramic, 0.30(K0.5Bi0.5)TiO3-0.30BiScO3-0.40PbTiO3 close to MPB exhibited excellent electrical properties with Tm of 384 °C, d33 of 247 pC/N, kp of 38.9%, Pr of 19.41 μC/cm2, and Ec of 2.25 kV/mm, indicative of a candidate for high temperature application.  相似文献   

16.
Pure SrRuO3 (SRO) thin films and SRO thin films containing the extra metallic phases Ru, RuO2 and Sr3Ru2O7 were deposited by MOCVD on (0 0 1) SrTiO3 substrates under different conditions (Ru/Sr and Ar/O2 ratio in the gas phase, substrate temperature, supersaturation). The single-phase compressively-strained SRO film is of high structural quality and shows a ferromagnetic transition at a suppressed Curie temperature (Tc) of about 142 K and low electrical resistivity (230 μΩ cm). Under certain deposition conditions Ru and RuO2 extra phases form leading to a reduced room temperature resistivity of 100 μΩ cm. On the other hand, the presence of Sr3Ru2O7 increases the resistivity to 385 μΩ cm. We have observed that the existence of the extra phases caused a slight shift of Tc towards the bulk value, while relaxation of the lattice strain resulted in increase of Tc to 160 K. The deviation from the stoichiometric composition in films with extra phases is also confirmed by the residual electrical resistivity ratio. On the other hand, the pure SRO films, the compressively strained and the plastically relaxed exhibit a stoichiometric ratio.  相似文献   

17.
Single crystals of (YbxGd1−x)3Ga5O12 (0.0 ≤ x ≤ 1.0) have been grown by the micro-pulling-down method. Formation of continuous solid solutions with a garnet structure was confirmed. Composition dependence of the lattice constant, thermal diffusivity, specific heat capacity and thermal conductivity was investigated. Assignment of the Yb3+-energy levels in Gd3Ga5O12-host lattice has been performed by using absorption, emission and Raman spectroscopy measurements at both, room temperature and at 12 K.  相似文献   

18.
The ionic transport in thin film plasticized polymer electrolytes based on polyvinylidene fluoride (PVdF) as the polymer host, silver triflate (AgCF3SO3) as salt and ethylene carbonate (EC) as plasticizer prepared by solution casting technique has been reported. Addition of silver triflate has resulted in an increase in the room temperature (298 K) electrical conductivity of the polymer from 10−6 to 10−5 S cm−1 whereas incorporation of EC as the plasticizer has further enhanced the conductivity value by an order of magnitude to 10−4 S cm−1 owing to the possible decrease in crystallinity of the polymer matrix as revealed by the detailed temperature-dependent complex impedance, silver ionic transference number, Fourier transform infrared and X-ray diffraction measurements.  相似文献   

19.
Ceramic samples of La0.1Sr0.9−xDyxTiO3 (x = 0.01, 0.03, 0.07, 0.10) have been prepared by the solid-state reaction method. Characterization from the powder X-ray diffraction indicates that their crystal structure changes from cubic to tetragonal phase. Their electrical and thermal transport properties are measured in the temperature range of 300-1100 K. n-Type thermoelectric is obtained with large Seebeck coefficient. The figure of merit is markedly improved, due to relatively lower electrical resistivity and thermal conductivity by Dy doping effect. A much lower electrical resistivity of 0.8 mΩ cm at room temperature is obtained in La0.1Sr0.8Dy0.1TiO3, and with a relatively lower thermal conductivity of 2.5 W/m K at 1075 K. The maximum figure of merit reaches ∼0.36 at 1045 K for La0.1Sr0.83Dy0.07TiO3, which is the largest value among n-type oxide thermoelectric ceramics.  相似文献   

20.
The near morphotropic phase boundary (MPB) compositions of lead-free piezoelectric ceramics based on sodium bismuth titanate (Na0.50Bi0.50TiO3: NBT) and barium titanate (BaTiO3: BT) were carefully investigated by conventional high temperature mixed-oxide method. All the ceramics exhibit single phase rhombohedral symmetry. The frequency (100 Hz to 1 MHz) and temperature (Room temperature–500 °C) dependence of impedance spectroscopy of (1 − x)Na0.50Bi0.50TiO3–xBaTiO3 (x = 0.0, 0.06, 0.07 and 0.08) ceramics were investigated by impedance analyzer. The frequency explicit plots of Z″ versus frequency at various temperatures show peaks in the higher temperature range (>400 °C). The compounds show dielectric relaxation, which is found to be of non-Debye type and the relaxation frequency shifted to higher side with increase in temperature. The activation energy values obtained for different BT content suggest that the electrical conduction in NBT is mainly due to the mobility of the ionized oxygen defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号