首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(La0.05Bi0.95)2Ti2O7 (LBTO) thin films had been successfully prepared on P-type Si substrate by chemical solution deposition method. The structural properties of the films were studied by X-ray diffraction. The phase of (La0.05Bi0.95)2Ti2O7 is more stable than the phase of Bi2Ti2O7 without La substitution. The films exhibited good insulating properties with room temperature resistivities in the range of 1012-1013 Ω cm. The dielectric constant of the film annealed at 550 °C at 100 kHz was 157 and the dissipation factor was 0.076. The LBTO thin films can be used as storage capacitors in DRAM.  相似文献   

2.
Multiferroic epitaxial films, include SrRuO3/Pb(Zr0.95Ti0.05)O3/CoFe2O4 has been successfully deposited on SrTiO3 substrate by pulsed-laser deposition technique. The results show that the prepared films exhibit a single phase. The Pb(Zr0.95Ti0.05)O3 (PZT) film was highly textured with (1 0 0) orientation and gives good ferroelectric properties with saturated polarization of 15 μC/cm2. The magnetic coercivity of CoFe2O4 film on Pb(Zr0.95Ti0.05)O3 has been dampened to 0.9 kOe. The anisotropic magnetically behavior of CoFe2O4 film was changed to isotropic by using high Zr concentrated PZT as underneath layer. Heterostructure films show a good ferromagnetic and ferroelectric coupling that lead to the large magnetoelectricity of 287 mV/cm Oe.  相似文献   

3.
Optical properties and microstructures of Mg(Zr0.05Ti0.95)O3 thin films prepared by sol-gel method on n-type Si(100) substrates at different annealing temperatures have been investigated. The surface structural and morphological characteristics analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscope (AFM) were found to be sensitive to the deposition conditions, such as annealing temperature (600-800 °C). The optical transmittance spectra of the Mg(Zr0.05Ti0.95)O3 thin films were measured by using UV-visible recording spectro-photometer. The diffraction pattern showed that the deposited films exhibited a polycrystalline microstructure. All films exhibited Mg(Zr0.05Ti0.95)O3 peaks orientation perpendicular to the substrate surface and the grain size with the increase in the annealing temperature. The dependence of the microstructure and dielectric characteristics on annealing temperature was also investigated.  相似文献   

4.
Thin films of ferroelectric relaxor Pb1 − 3x/2LaxZr0.2Ti0.8O3, x = 0.22 have been integrated in an oxidic heterostructure for electro-optical investigations. The quadratic electro-optic behavior and optical properties have been studied by means of variable angle spectroscopic ellipsometry method in reflection mode. Birefringence values up to δΔ = 0.17° have been obtained for quadratic compositions at λ = 540 nm and 65° angle of incidence. Structural, chemical and morphologic properties of Pb1-3x/2LaxZr0.2Ti0.8O3 (x = 0.22) thin films have been investigated by x-ray diffraction and atomic force microscopy techniques. The dielectric and ferroelectric behavior has been investigated using dielectric spectroscopy and a ferroelectric test system.  相似文献   

5.
The structure evolution of Pb(Zr0.5Ti0.5)O3 thin films with different thicknesses on the Pt(1 1 1)/Ti/SiO2/Si substrates has been investigated using X-ray diffraction and Raman scattering. Differing from Pb(Zr0.5Ti0.5)O3 bulk ceramic with a tetragonal phase, our results indicate that for PZT thin films with the same composition monoclinic phase with Cm space group coexisting with tetragonal phase can appear. It is suggested that tensile stress plays a role in shifting the morphotropic phase boundary to titanium-rich region in PZT thin films. The deteriorated ferroelectric properties of PZT thin films can be attributed mainly to the presence of thin non-ferroelectric layer and large tensile stress.  相似文献   

6.
Trilayered Bi3.25La0.75Ti3O12 (25 nm)/(Na0.5Bi0.5)0.94Ba0.06TiO3 (300 nm)/Bi3.25La0.75Ti3O12 (25 nm) and Pb(Zr0.4Ti0.6)O3 (25 nm)/(Na0.5Bi0.5)0.94Ba0.06TiO3 (300 nm)/Pb(Zr0.4Ti0.6)O3 (25 nm) thin films without undesirable phases have been deposited on Pt/Ti/SiO2/Si substrates. It was found that the Bi3.25La0.75Ti3O12 and Pb(Zr0.4Ti0.6)O3 layers are very effective to inhibit the charge transport in the trilayered films. Much better insulating properties than those of (Na0.5Bi0.5)0.94Ba0.06TiO3 films have been achieved in the trilayered films. The trilayered films show good dielectric, ferroelectric and pyroelectric properties. Remnant polarizations 2Pr of 16 µC/cm2 and 34 µC/cm2, pyroelectric coefficients of 4.8 × 10 4 C m− 2 K− 1 and 7.0 × 10− 4 C m− 2 K− 1 have been obtained for the Bi3.25La0.75Ti3O12/(Na0.5Bi0.5)0.94Ba0.06TiO3/Bi3.25La0.75Ti3O12 and Pb(Zr0.4Ti0.6)O3/(Na0.5Bi0.5)0.94Ba0.06TiO3/Pb(Zr0.4Ti0.6)O3 thin films, respectively. The trilayered films are promising candidates for sensor and actuator applications.  相似文献   

7.
Epitaxial Ba(Zr0.3Ti0.7)O3 thin films were grown on (LaAlO3)0.3(Sr2AlTaO6)0.35 (001) single-crystal substrates by pulsed laser deposition at 700 °C in different oxygen partial pressures ranging from 6.7 Pa to 40.0 Pa. A strong correlation is observed between the structure and dielectric properties for the Ba(Zr0.3Ti0.7)O3 thin films. The tetragonal distortion (ratio of in-plane and out-of-plane lattice parameter, a/c) of the films depends on the oxygen partial pressures. a/c varies from 0.989 at 6.7 Pa to 1.010 at 40.0 Pa, indicating the in-plain strain changes from compressive to tensile. The in-plain strain (either compressive or tensile) shifts the Curie temperature of the Ba(Zr0.3Ti0.7)O3 thin films dramatically. Surface morphology and dielectric properties of Ba(Zr0.3Ti0.7)O3 thin films have a strong dependence of the oxygen partial pressure. The film grown 26.7 Pa, which corresponds to a moderate in-plain tensile strain and a Curie temperature of ~ 30 °C, shows the largest relative permittivity, tunability and the best figure of merit in a broad frequency range (1 kHz-500 MHz), which may be a promising candidate for room-temperature microwave device applications.  相似文献   

8.
In this work, CdO–Bi2O3–PbO–ZnO–Al2O3–B2O3–SiO2 low softening point glass powders were prepared and employed as sintering aid to improve the dielectric breakdown strength and reduce the sintering temperature of Pb0.97La0.02(Zr0.56Sn0.35Ti0.09)O3 antiferroelectric ceramics. The effects of glass content and sintering temperature on the densification, microstructure, dielectric properties and energy storage performance of Pb0.97La0.02(Zr0.56Sn0.35Ti0.09)O3 antiferroelectric ceramics have been investigated. With inclusion of glass, sintered densities comparable to those obtained by conventional sintering are achieved at only 1,050 °C. The breakdown strength of glass-added samples was notably improved due to the reduction of the grain size. The antiferroelectric to ferroelectric switching field and the ferroelectric to antiferroelectric field both increased with increasing glass content. The dielectric constant and dielectric loss decreased gradually with increasing glass content. As a result, the highest recoverable energy density of 3.3 J/cm3 with an energy efficiency of 80 % was achieved in 4 wt% glass-added sample sintered at 1,130 °C.  相似文献   

9.
We reported the effects of Mn doping on the structure and dielectric properties of (Ba0.835Ca0.165)(Zr0.09Ti0.91)O3 (BCZT) thin films prepared by sol-gel method. The (Ba0.835Ca0.165)Mnx(Zr0.09Ti0.91)1 − xO3 (x = 0, 0.002, 0.005, and 0.01) thin films exhibited a pure pseudo-cubic perovskite structure with random orientation. Scanning electron microscopy and atomic force microscopy observation showed that increasing Mn-doping amount caused a decrease in particle size and a cluster of the particles, while the film surface remained smooth and crack-free. Compared with the undoped film, Mn doped BCZT thin films exhibited smaller dielectric constant and lower dielectric loss. The figure of merit reached the maximum value of 16.7 with a tunability of 53.6% for the film with 0.5 mol % Mn doping, when a bias electric field of 400 kV/cm was applied at 100 kHz. The results indicated that the Mn doped BCZT thin films are suitable for tunable microwave device applications.  相似文献   

10.
Ba0.7Sr0.3(Ti1  xZrx)O3 (x = 0, 0.1, 0.2) (BSZT) thin films have been prepared on copper foils using sol-gel method. The films were annealed in an atmosphere with low oxygen pressure so that the substrate oxidation was avoided and the formation of the perovskite phase was allowed. The X-ray diffraction results show a stable polycrystalline perovskite phase, with the diffraction peaks of the BSZT films shifting toward the smaller 2θ with increasing Zr content. Scanning electron microscopy images show that the grain size of the BSZT thin films decreases with increasing Zr content. High resolution transmission electron microscopy shows the clear lattice and domain structure in the film. The dielectric peaks of the BSZT thin films broaden with increasing Zr content. Leakage current density of Ba0.7Sr0.3(Ti1  xZrx)O3 (x = 0.1) thin film is the lowest over the whole applied voltage.  相似文献   

11.
Bi3.25La0.75Ti3O12(BiLT) thin films with different thickness were successfully deposited onto fused quartz by chemical solution deposition. X-ray diffraction analysis shows that BiLT thin films are polycrystalline with (0 0 2)-preferred orientation. The dispersion of refractive indices of the BiLT thin films was investigated by the optical transmittance spectrum. The optical band gap energy was estimated from the graph of (hνα)2 versus . The results show that the refractive index and band-gap energy of the BiLT thin films decrease with the films thickness.  相似文献   

12.
Porous Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics with different pore size were prepared by solid-state sintering in air. The microstructural effect on the properties has been systematically investigated by SEM, ferroelectric hysteresis, strain-electric field curves and breakdown strength measurements. The results demonstrate that the microgeometry has a subtle effect on the ferroelectric and dielectric properties. However, the results also demonstrate that the electric field induced strain and the dielectric breakdown strength decreases with the increase of pore size.  相似文献   

13.
Lanthanum modified lead zirconate titanate (Pb0.91La0.09)(Zr0.65Ti0.35)O3 (PLZT) ferroelectric thin films were grown on Pt/Ti/SiO2/Si(1 0 0) and fused quartz substrates using a sol-gel method with rapid thermal annealing processing. The results showed that the highly (1 1 1)-oriented pervoskite PLZT thin film growth on Pt/Ti/SiO2/Si(1 0 0) substrates. The electrical measurements were conducted on PLZT films in metal-ferroelectric-metal capacitor configuration. The PLZT thin films annealed at 600 °C showed well-saturated hysteresis loops with remanent polarization and coercive electric field values were 10.3 μC/cm2 and 36 kV/cm, respectively, at an applied field of 300 kV/cm. At 100 kHz, the dielectric constant and dielectric loss of the film are 682 and 0.021, respectively. The PLZT thin film on fused quartz substrate, annealed at 600 °C, exhibited good optical transmittance, the band gap of optical direct transitions is 3.89 eV.  相似文献   

14.
The structural, electrical, dielectric, magnetic and magnetoelectric properties of (x)Ni0.8Zn0.2Fe2O4 + (1 − x)Pb0.93La0.07(Zr0.60Ti0.40)O3 (x = 0, 0.15, 0.30, 0.45 and 1) have been studied by means of various experimental techniques. Polycrystalline samples of this series have been prepared by the double sintering ceramic method. X-ray diffraction data analysis revealed purity of the composites. Microstructural analysis using scanning electron microscopy mode depicts the presence of two phases in contact with each other. Dielectric properties were studied at and well above room temperature. Temperature dependent variation of the dielectric constant show diffused phase transition which can be well described by fitting the Lorentz-type relation, . Observation of well-saturated ferroelectric hysteresis loop and magnetic hysteresis loop for composites indicates that ferroelectric and magnetic ordering exist simultaneously at room temperature. The static value of magneto electric voltage coefficient (αE) has been studied as a function of magnetic field at room temperature for all the composites. The maximum value of αE is 7.53 mV/(cm Oe) for 85% PLZT-15% NZFO composites.  相似文献   

15.
We have constructed phase diagrams of Pb0.995La0.005[Zr0.95 − y Sn0.05 (Mg1/3Nb2/3) y ]0.99875O3 (y = 0–0.02) solid solutions in different electric fields. Our results demonstrate that, by cooling in a constant electric field, the low-temperature rhombohedral ferroelectric phase can be stabilized in a narrow temperature range. It is shown that the phase state below the Curie temperature strongly depends on the temperature-field history of the material. In particular, the low-temperature rhombohedral ferroelectric phase only appears during cooling. At the same time, the temperature-field stability region of the tetragonal antiferroelectric phase is much broader during heating. Original Russian Text ? E.A. Bikyashev, E.A. Reshetnikova, I.V. Lisnevskaya, T.G. Lupeiko, 2008, published in Neorganicheskie Materialy, 2008, Vol. 44, No. 6, pp. 706–713.  相似文献   

16.
Porous Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics with a pore size of the order of the crystalline grain size were prepared and the microstructure and the properties were investigated. Based on this microstructure, the net porosity of the ceramics can be attributed to the intentionally introduced extrinsic porosity and thus the quantitative dependence of ferroelectric and dielectric properties of the ceramics on the porosity can be established respectively. A good agreement with experimental measurements was obtained. Our work represents the first attempt to tailor the properties of ferroelectric ceramics via varying the porosity from the viewpoint of application.  相似文献   

17.
The Gd2(TixZr1 − x)2O7 (x = 0, 0.25, 0.50, 0.75, 1.00) ceramics were synthesized by solid state reaction at 1650 °C for 10 h in air. The relative density and structure of Gd2(TixZr1 − x)2O7 were analyzed by the Archimedes method and X-ray diffraction. The thermal diffusivity of Gd2(TixZr1 − x)2O7 from room temperature to 1400 °C was measured by a laser-flash method. The Gd2Zr2O7 has a defect fluorite-type structure; however, Gd2(TixZr1 − x)2O7 (0.25 ≤ x ≤ 1.00) compositions exhibit an ordered pyrochlore-type structure. Gd2Zr2O7 and Gd2Ti2O7 are infinitely soluable. The thermal conductivity of Gd2(TixZr1 − x)2O7 increases with increasing Ti content under identical temperature conditions. The thermal conductivity of Gd2(TixZr1 − x)2O7 first decreases gradually with the increase of temperature below 1000 °C and then increases slightly above 1000 °C. The thermal conductivity of Gd2(TixZr1 − x)2O7 is within the range of 1.33 to 2.86 W m− 1 K− 1 from room temperature to 1400 °C.  相似文献   

18.
Single-phase, co-doped (La3+, Zr4+) in polycrystalline Bi0.95La0.05Fe1−xZrxO3 (with x = 0, 0.02, 0.04 and 0.06) ceramics (particle size ∼650 nm; tolerance factor ∼0.883) were prepared by solid state reaction of oxides, followed by rapid quenching of samples. Enhanced magnetization was observed in co-doped (La3+, Zr4+) BiFeO3 which may be ascribed to the collapse of the spiral spin structure. Step magnetization was observed in zero field cooled (ZFC) and field cooled (FC) curves. The coexistence of ferromagnetism and ferroelectricity has been confirmed in the co-doped (La3+, Zr4+) in BiFeO3 ceramics by means of (M–H) and (P–E) loops measurements. Magnetodielectric properties have been observed at room temperature.  相似文献   

19.
Weiguo Qu 《Thin solid films》2006,496(2):383-388
A chelating and spin-coating procedure was used to prepare antiferroelectric thin films of Pb0.99Nb0.02[(Zr0.84Sn0.16)0.982Ti0.018]0.98O3. By controlling substrate and thermal processing conditions, films with strong (100) and (111) textures, as well as without textures, were prepared. These antiferroelectric films showed the characteristic double hysteresis polarization vs. electric field loops. An orientation dependence of the critical field for the antiferroelectric-to-ferroelectric phase transition was also observed. In addition, when the applied voltage exceeded a critical level during the first “ramp up,” an abnormal reduction in the area of the hysteresis loop was noticed in the (100) and (111) textured films.  相似文献   

20.
The Pb(Zr0.80Ti0.20)O3 (PZT) thin films with and without a PbO buffer layer were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by radio frequency (rf) magnetron sputtering method. The PbO buffer layer improves the microstructure and electrical properties of the PZT thin films. High phase purity and good microstructure of the PZT thin films with a PbO buffer layer were obtained. The effect of the PbO buffer layer on the ferroelectric properties of the PZT thin films was also investigated. The PZT thin films with a PbO buffer layer possess better ferroelectric properties with higher remnant polarization (Pr = 25.6 μC/cm2), and lower coercive field (Ec = 60.5 kV/cm) than that of the films without a PbO buffer layer (Pr = 9.4 μC/cm2, Ec = 101.3 kV/cm). Enhanced ferroelectric properties of the PZT thin films with a PbO buffer layer is attributed to high phase purity and good microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号