首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Structure transformations and proton conductivity of hydrogen zirconium phosphates with the NASICON structure, HXZr2−XMX(PO4)3·H2O (X = 0, 0.02 and 0.1, M = Nb, Y), were studied by X-ray powder diffraction, calorimetry, IR- and impedance spectroscopy. Substitution of zirconium by niobium leads to decrease of the lattice parameters, while yttrium doping leads to their increase. H0.9Zr1.9Nb0.1(PO4)3 structure was determined at 493 and 733 K. This phase crystallizes in rhombohedral space group with lattice parameters a = 8.8564(5) Å, c = 22.700(1) Å at 493 K and a = 8.8470(2) Å, c = 22.7141(9) Å at 733 K. The a parameter and lattice volume were found to decrease with temperature increasing. Structure transformations upon heating are caused mainly by the decrease of the M1 site and C cavities. Ion conductivity of obtained materials was found to increase in humid atmosphere. Activation energies of conductivity were calculated. Rhombohedral-triclinic phase transition found by X-ray powder diffraction was proved by calorimetry data. According to XRD and IR spectroscopy data hydrogen bond in HZr2(PO4)3 was found to be weaker than in hydrated material.  相似文献   

2.
A new binary Co1/2Fe1/2(H2PO4)2·2H2O was synthesized by a simple, rapid and cost-effective method using CoCO3-Fe(c)-H3PO4 system at ambient temperature. Thermal treatment of the obtained Co1/2Fe1/2(H2PO4)2·2H2O at 600 °C yielded as a binary cobalt iron cyclotetraphosphate CoFeP4O12. The FTIR and XRD results of the synthesized Co1/2Fe1/2(H2PO4)2·2H2O and its final decomposed product CoFeP4O12 indicate the monoclinic phases with space group P21/n and C2/c, respectively. The particle morphologies of both binary metal compounds appear the flower-like microparticle shapes. Room temperature magnetization results show novel superparamagnetic behaviors of the Co1/2Fe1/2(H2PO4)2·2H2O and its final decomposed product CoFeP4O12, having no hysteresis loops in the range of ±10,000 Oe with the specific magnetization values of 0.045 and 12.502 emu/g at 10 kOe, respectively. The dominant physical properties of the obtained binary metal compounds (Co1/2Fe1/2(H2PO4)2·2H2O and CoFeP4O12) are compared with the single compounds (M(H2PO4)2·2H2O and M2P4O12; where M = Co, Fe), indicating the presence of Co ions in substitution position of Fe ions.  相似文献   

3.
The CoxNi1−x(SeO3)·2H2O (x = 0, 0.4, 1) family of compounds has been hydrothermally synthesized under autogeneous pressure and characterized by elemental analysis, infrared and UV-vis spectroscopies and thermogravimetric and thermodiffractometric techniques. The crystal structure of Co0.4Ni0.6(SeO3)·2H2O has been solved from single-crystal X-ray diffraction data. This phase is isostructural with the M(SeO3)·2H2O (M = Co and Ni) minerals and crystallizes in the P21/n space group, with a = 6.4681(7), b = 8.7816(7), c = 7.5668(7) Å, β = 98.927(9)° and Z = 4. The crystal structure of this series of compounds consists of a three-dimensional framework formed by (SeO3)2− selenite oxoanions and edge-sharing M2O10 dimeric octahedra in which the metallic cations are coordinated by the oxygens belonging to both the selenite groups and water molecules. The diffuse reflectance spectra show the essential characteristics of Co(II) and Ni(II) cations in slightly distorted octahedral environments. The calculated values of the Dq and Racah (B and C) parameters are those habitually found for the 3d7 and 3d8 cations in octahedral coordination. The magnetic measurements indicate the existence of antiferromagnetic interactions in all the compounds. The magnetic exchange pathways involve the metal orbitals from edge-sharing dimeric octahedra and the (SeO3)2− anions which are linked to the M2O10 polyhedra in three dimensions.  相似文献   

4.
The title compound, (N4C6H21)·(Co(H2PO4)(HPO4)2), was prepared hydrothermally (473 K, 10 days, autogenous pressure), in the presence of the tris(2-aminoethyl)amine as organic template. Its structure is built up from a network of four membered-rings, formed by the vertex linkages between [CoO4] and [H2PO4] tetrahedra with [HPO4] moieties hanging from the Co center. Hydrogen bonds involving the cobalt phosphate units and the triply protonated amine molecule, contribute to the stability of the structure. The IR spectrum shows bands characteristic of the (N4C6H21)3+ cations and the (H2PO4) and (HPO4)2− phosphate anions. The UV-Visible-NIR spectrum confirms the tetrahedral coordination of Co2+ ions. The TGA analysis indicates that the dehydration of (N4C6H21)·(Co(H2PO4)(HPO4)2) occurs in one step. Magnetic measurements from 4.5 to 305 K show a weak antiferromagnetic character of this compound.  相似文献   

5.
Gel formation was realized by adding citric acid to a solution of La(NO3)3·5H2O, Ca(NO3)2·4H2O, and Fe(NO3)2·9H2O. Perovskite-type (La1−xCax)FeO3 (0 ≤ x ≤ 0.2) was synthesized by firing the gel at 500 °C in air for 1 h. The crystallite size (D1 2 1) decreased with increasing x, while the specific surface area was 6.8-9.4 m2/g and independent of x. The XPS measurement of the (La1−xCax)FeO3 surface indicated that the Ca2+ ion content increased with increasing x, while the Fe ion content was independent of x. Catalytic activity for CO oxidation increased with increasing x.  相似文献   

6.
In this paper, we reported the successful synthesis of hierarchical Ni11(HPO3)8(OH)6 superstructures based on nanorods via a facile hydrothermal route, employing NiCl2·6H2O and NaH2PO2·H2O as the reactants in the presences of polyvinylpyrrolidone (PVP) and CH3COONa·3H2O. The reaction was carried out at 170 °C for 10 h. HPO32− ions were provided via the dismutation reaction of H2PO2 ions in a weak basic solution. The as-obtained products were characterized by X-ray powder diffraction (XRD), energy dispersive spectrometry (EDS), field emission scanning electron microscopy (SEM), selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). Some factors influencing the morphology of the hierarchical Ni11(HPO3)8(OH)6 nanorods, such as the reaction temperature, time, the amounts of PVP and CH3COONa, and the initial concentration of Ni2+ ions, were systematically investigated. A possible growth mechanism was proposed based on experimental results.  相似文献   

7.
A new iron(III) phosphate Na3Fe3(PO4)4 has been synthesized and characterized. It decomposes before melting at 860°C into FePO4 and Na3Fe2(PO4)3. The structure of the compound was determined by single-crystal X-ray diffraction. The unit cell is monoclinic with the following parameters: a=19.601(8) Å, b=6.387(1) Å, c=10.575(6) Å and β=91.81(4)°; Z=4; space group: C2/c. Na3Fe3(PO4)4 exhibits a layered structure involving corner-linkage between FeO6 octahedra, and corner- and edge-sharing between FeO6 octahedra and PO4 tetrahedra. The Na+ cations occupying the interlayer space are six- and seven-fold coordinated by oxygen atoms. The relationship between the structure of Na3Fe3(PO4)4 and the previous reported hydrate K3Fe3(PO4)4·H2O will be discussed.  相似文献   

8.
Tantalum hydrogen phosphate, β-TaH(PO4)2, has a three-dimensional structure that is stable to remarkably high temperature (∼600 °C) presumably due to the presence of strong hydrogen bonds. Impedance measurements indicate a low conductivity, 2.0 × 10−6 S/cm at 200 °C in 5% H2. In further studies aimed at enhancing the conductivity by aliovalent doping, we have investigated systematically the synthesis of compounds in the TaH(PO4)2-W2P2O11 system at 380 °C. As a result, a new phase, Ta2(WO2)0.87H0.26(PO4)4, was identified and subsequently the molybdenum analog Ta2(MoO2)(PO4)4 was also prepared. The structures were determined by single crystal X-ray diffraction techniques. The structures of Ta2(WO2)0.87H0.26(PO4)4 and Ta2(MoO2)(PO4)4 can be formally derived from the structure of β-TaH(PO4)2 by the replacement of two P-OH protons with an MO22+ (M = Mo and W) group together with a change in the orientation of some phosphate tetrahedra.  相似文献   

9.
Ba1−ySryLa4−xTbx(WO4)7 (x = 0.02-1.2, y = 0-0.4) phosphors were prepared via a solid-state reaction and their photoluminescence properties were investigated. An analysis of the decay behavior indicates that the energy migration between Tb3+ ions is conspicuous in the 5D3 → 7F4 transition due to the cross-relaxation in BaLa4(WO4)7. A partial substitution of Ba2+ by Sr2+ can not only enhance the emission intensity but also increase the solid solubility of Tb3+ in Ba1−ySryLa4−xTbx(WO4)7. The emission intensity of the 5D4 → 7FJ (J = 4, 5, 6) transitions can be enhanced by increasing Sr2+ and Tb3+ concentrations, with the optimal conditions being x = 1.2, y = 0.4 (Ba0.6Sr0.4La2.8Tb1.2(WO4)7). Under near-UV excitation at 379 nm, the CIE color coordinates of Ba1−ySryLa4−xTbx(WO4)7 vary from blue (0.212, 0.181) at x = 0.04, y = 0, to green (0.245, 0.607) at x = 1.2, y = 0.4.  相似文献   

10.
MgxCu3−xV2O6(OH)4·2H2O (x ∼ 1), with similar crystal structure as volborthite Cu3V2O7(OH)2·2H2O, was successfully prepared by a soft chemistry technique. The method consists of mixing magnesium nitrate and copper nitrate with a boiling solution of vanadium oxide (obtained by reacting V2O5 with few mL of 30 vol.% H2O2 followed by addition of distilled water). When ammonium hydroxide NH4OH 10% was added (pH 7.8), a green yellowish precipitate was obtained. Using X-ray powder diffraction data, its crystal structure has been determined by Rietveld refinement. Compared to volborthite, the vanadium coordination changes from tetrahedral VO4 to trigonal bipyramidal VO5, and magnesium replaces copper, preferably, in the less distorted octahedron. At 300 °C, the phase formed is similar to the high pressure (HP) monoclinic Cu3V2O8 phase. However at higher temperature, 600 °C, the phase obtained is different from known Cu3V2O8 phases.  相似文献   

11.
The compound HZr2(PO4)3 was converted to (H3O)Zr2(PO4)3 by refluxing in water for 12 or more hours. The water is lost above 150°C to regenerate the original triphosphate. The hydronium ion phase is rhombohedral with hexagonal axes of a = 8.760(1) and c = 23.774(4)A?. Proton conduction in these compounds was investigated by an ac impedance method over the frequency range 5Hz – 10MHz. The activation energy for (H3O)Zr2(PO4)3 in the temperature range of 25 to 150°C was 0.56eV while the corresponding value for HZr2(PO4)3 (125 – 300°C) was 0.44eV.  相似文献   

12.
4ZnO·B2O3·H2O is commonly used as a flame-retardant filler in composite materials. The microstructure of the powder is of importance in its applications. In our study, for the first time, one-dimensional (1D) nanostructure of 4ZnO·B2O3·H2O with rectangle rod-like shape has been synthesized by a hydrothermal route in the presence of surfactant polyethylene glycol-300 (PEG-300). The nanorods have been characterized by X-ray powder diffraction (XRD), inductively coupled plasma with atomic emission spectroscopy (ICP-AES), thermogravimetry (TG) and differential thermal analysis (DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with selected area electron diffraction (SAED) as well as high-resolution transmission electron microscopy (HRTEM). These nanorods are about 70 nm in thickness, 150-800 nm in width and have lengths up to a few microns. 4ZnO·B2O3·H2O nanorods crystallize in the monoclinic space group P21/m, a = 6.8871(19) Å, b = 4.9318(10) Å, c = 5.7137(16) Å, β = 98.81(21)° and V = 191.779(71) Å3.  相似文献   

13.
A new iron oxophosphate of composition Rb7Fe7(PO4)8O2·2H2O has been synthesized and studied by X-ray diffraction, TG and DTA analysis, magnetic susceptibility, neutron diffraction, Mössbauer spectroscopy and ionic conductivity. This compound crystallizes in the monoclinic system with the P21/c space group and the unit cell parameters a = 8.224(8) Å, b = 22.162(6) Å, c = 9.962(6) Å and β = 109.41(8)°. Its structure is built up from Fe7O32 clusters of edge- and corner-sharing FeO5 and FeO6 polyhedra. Neighboring clusters are connected by the phosphate tetrahedra to form a three-dimensional framework. The Rb+ cations and the water molecules are occupying intersecting tunnels parallel to a and c. The presence of water molecules was confirmed by TG and DTA analysis. The magnetic susceptibility measurements have shown the existence of antiferromagnetic ordering below 22 K with a weak ferromagnetic component. Additionally, these measurements show evidence for a strong magnetic frustration characterized by |θ/TN| ≈ 12. Powder neutron diffraction study confirms the presence of a long range antiferromagnetic order coupled to a weak ferromagnetic component along the b-axis. The strongly reduced magnetic moments extracted from the refinement support the existence of a magnetically frustrated ground state. The Mössbauer spectroscopy results confirmed the presence of only Fe3+ ions in both five and six coordination. The ionic conductivity measurements led to activation energy of 0.81 eV, a value that agrees with the obtained for other rubidium phosphates.  相似文献   

14.
(Gd1−x,Eux)2O2SO4 nano-phosphors were synthesized by a novel co-precipitation method from commercially available Gd2O3, Eu2O3, H2SO4 and NaOH starting materials. Composition of the precursor is greatly influenced by the molar ratio of NaOH to (Gd1−x,Eux)2(SO4)3 (the m value), and the optimal m value was found to be 4. Fourier transform infrared spectrum (FT-IR) and thermal analysis show that the precursor (m = 4) can be transformed into pure (Gd1−x,Eux)2O2SO4 nano-phosphor by calcining at 900 °C for 2 h in air. Transmission electron microscope (TEM) observation shows that the Gd2O2SO4 phosphor particles (m = 4) are quasi-spherical in shape and well dispersed, with a mean particle size of about 30-50 nm. Photoluminescence (PL) spectroscopy reveals that the strongest emission peak is located at 617 nm under 271 nm light excitation, which corresponds to the 5D0 → 7F2 transition of Eu3+ ions. The quenching concentration of Eu3+ ions is 10 mol% and the concentration quenching mechanism is exchange interaction among the Eu3+ ions. Decay study reveals that the 5D0 → 7F2 transition of Eu3+ ions has a single exponential decay behavior.  相似文献   

15.
Cobalt ethylenediammonium bis(sulfate) tetrahydrate, [NH3(CH2)2NH3][Co(SO4)2(H2O)4], has been synthesised by slow evaporation at room temperature. It crystallises in the triclinic system, space group , with the unit cell parameters: a = 6.8033(2), b = 7.0705(2), c = 7.2192(3) Å, α = 74.909(2)°, β = 72.291(2)°, γ = 79.167(2)°, Z = 1 and V = 317.16(2) Å3. The Co(II) atom is octahedrally coordinated by four water molecules and two sulfate tetrahedra leading to trimeric units [Co(SO4)2(H2O)4]. These units are linked to each other and to the ethylenediammonium cations through OW-H…O and N-H…O hydrogen bonds, respectively. The zero-dimensional structure is described as an alternation between cationic and anionic layers along the crystallographic b-axis. The dehydration of the precursor proceeds through three stages leading to crystalline intermediary hydrate phases and an anhydrous compound. The magnetic measurements show that the title compound is predominantly paramagnetic with weak antiferromagnetic interactions.  相似文献   

16.
《Materials Research Bulletin》2002,37(8):1381-1392
Powder X-ray diffraction data for π-Ti2O(PO4)2·2H2O (π-TiP) is indexed in a monoclinic cell [a=5.067(4), b=10.898(3), c=14.533(8) Å, β=96.0(1)°]. Structural correlations with other titanium phosphates are discussed. The reaction of π-TiP with molten MNO3 (M=Na, K) originates new metal phases with a KTP-type formula, π-M0.5H0.5TiOPO4. These compounds maintain the fibrous morphology of their precursor. The reactions are monitored by thermogravimetric analysis. Thermal decomposition of the novel compounds is described.  相似文献   

17.
Double layered hydroxide materials of composition A6B2(OH)16Cl2·4H2O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) were synthesized by chemical precipitation at 60 °C. Different levels of crystallinity and ordering degree were observed depending upon the chemical environment or the combination between divalent and trivalent cations. The results from high-resolution transmission electron microscopy revealed that nanostructured layered samples were obtained with interplanar spacing compatible with previous literature. Raman scattering was employed to investigate the complex band structure observed, particularly the lattice vibrations at lower frequencies, which is intimately correlated to the cationic radius of both divalent and trivalent ions. The results showed that strongly coordinated water and chloride ions besides highly structured hydroxide layers have a direct influence on the stability of the hydrotalcites. It was observed that transition and decomposition temperatures varied largely for different chemical compositions.  相似文献   

18.
2-6 mol% ZrO2 was added to a base glass composition of P2O5 31.25, CaO 43.75, TiO2 25 (mol%) at the expense of TiO2. The prepared glasses were crystallized to bulk glass ceramics containing the major phases of β-Ca3(PO4)2 and CaTi4(PO4)6. DTA was utilized to determine the appropriate phase separation-nucleation and crystallization temperatures. The crystalline products and resulting microstructures were examined by XRD and SEM. The β-Ca3(PO4)2 phase was dissolved out by leaching the resulting glass ceramics in HCl, leaving a porous skeleton of CaTi4(PO4)6. It was shown that ZrO2 addition resulted in reduction of volume porosity and mean pore diameter while the specific surface area was increased. The smallest median pore diameter and largest surface area were 8.6 nm and 32 m2 g−1 respectively obtained for the specimen containing 6 mol% ZrO2. The ZrO2 addition also improved the chemical durability and bending strength of porous glass ceramics.  相似文献   

19.
Chemical preparation, crystal structure, calorimetric and spectroscopic investigations (IR and RMN) are given for a new non-centrosymmetric organic-cation dihydrogen phosphate-arsenate [H2(C4H10N2)][H2(As, P)O4]2. This compound is triclinic P1 with the following unit-cell parameters: a = 7.082(2) Å, b = 7.796(1) Å, c = 12.05(3) Å, α = 95.37(2)°, β = 98.38(3)°, γ = 62.98(1)°, Z = 2, V = 586.2(1) Å3 and Dx = 1.836 g cm−3. The crystal structure has been solved and refined to R = 0.03 using 2328 independent reflections. The structure can be described as infinite (H2XO)n chains spreading parallel to the b direction. These chains are themselves interconnected by a set of NH?O hydrogen bonds generated by the organic entities, alternating with the chains. Solid-state 13C, 15N and 31P MAS NMR spectroscopies are in agreement with the X-ray structure.  相似文献   

20.
In this paper, a series of pure Ni1 − xZnxFe2O4 (0 ≤ x ≤ 1) spinel ferrites have been synthesized successfully using a novel route through calcination of tailored hydrotalcite-like layered double hydroxide molecular precursors of the type [(Ni + Zn)1 − x − yFey2+Fex3+(OH)2]x+(SO42−)x/2·mH2O at 900 °C for 2 h, in which the molar ratio of (Ni2+ + Zn2+)/(Fe2+ + Fe3+) was adjusted to the same value as that in single spinel ferrite itself. The physico-chemical characteristics of the LDHs and their resulting calcined products were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Mössbauer spectroscopy. The results indicate that calcination of the as-synthesized LDH precursor affords a pure single Ni1 − xZnxFe2O4 (0 ≤ x ≤ 1) spinel ferrite phase. Moreover, formation of pure ferrites starting from LDHs precursors requires a much lower temperature and shorter time, leading to a lower chance of side-reactions occurring, because all metal cations on the brucite-like layers of LDHs can be uniformly distributed at an atomic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号