首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ag-Yb2O3 electrical contact materials were fabricated by spark plasma sintering(SPS).The effects of silver powder particle size on the microstructure and properties of the samples were investigated.The surface morphologies of the sintered samples were examined by optical microscope(OM),and the fracture morphologies were observed by scanning electron microscopy(SEM).The physical and mechanical properties such as density,electrical resistivity,microhardness,and tensile strength were also tested.The results show that the silver powder particle size has evident effects on the sintered materials.Comparing with coarse silver powder(5 μm),homogeneous and fine microstructure was obtained by fine silver powder(≤0.5 μm).At the same time,the electrical conductivity,microhardness,and tensile strength of the sintered samples with fine silver powder were higher than those of the samples with coarse silver powder.However,silver powder particle size has little influence on the relative densities,which of all samples(both by fine and coarse silver powders) is more than 95%.The fracture characteristics are ductile.  相似文献   

2.
A fine-grained TiAl alloy with a composition of Ti-47%Al(mole fraction) was prepared by double mechanical milling(DMM) and spark plasma sintering(SPS). The relationship among sintering temperature, microstructure and mechanical properties of Ti-47%Al alloy was studied by X-ray diffractometry(XRD), scanning electron microscopy(SEM) and mechanical testing. The results show that the morphology of double mechanical milling powder is regular with size of 20?40 μm. The main phase TiAl and few phases Ti3Al and Ti2Al were observed in the SPS bulk samples. For samples sintered at 1000 °C, the equiaxed crystal grain was achieved with size of 100?250 nm. The samples exhibited compressive and bending properties at room temperature with compressive strength of 2013 MPa, compression ratio of 4.6% and bending strength of 896 MPa. For samples sintered at 1100 °C, the size of equiaxed crystal grain was obviously increased. The SPS bulk samples exhibited uniform microstructures, with equiaxed TiAl phase and lamellar Ti3Al phase were observed. The samples exhibited compressive and bending properties at room temperature with compressive strength of 1990 MPa, compression ratio of 6.0% and bending strength of 705 MPa. The micro-hardness of the SPS bulk samples sintered at 1000 °C is obviously higher than that of the samples sintered at 1100 °C. The compression fracture mode of the SPS TiAl alloy samples is intergranular fracture and the bending fracture mode of the SPS TiAl alloy samples is intergranular rupture and cleavage fracture.  相似文献   

3.
Ultrafine WC-11Co hard metals added with different proportions of graphite were prepared by spark plasma sintering at 40 MPa/1200°C for 5 min,and the influence of graphite as free carbon on the microstructure and mechanical properties were investigated.The XRD analysis showed that decarbonization could be prevented by adding graphite.Compact hard metals composed of finer and more homogeneous WC grains with little flaws can be achieved after 0 wt.% to 1.5 wt.% graphite was added.The hardness and fracture toughness increase initially with increasing graphite content,and with over 1.5 wt.% they descend due to coarse grains and more defects.Therefore,1.5 wt.% graphite is the optimal addition content in view of the hardness and transverse rupture toughness.Furthermore,the coercive force decreases while the saturated magnetic intensity increases with the increase of graphite content.  相似文献   

4.
Spark plasma sintering (SPS) was used to fabricate Al/diamond composites. The influence of diamond particle size on the microstructure and thermal conductivity (TC) of composites was investigated by combining experimental results with model prediction. The results show that both composites with 40 μm particles and 70 μm particles exhibit high density and good TC, and the composite with 70 μm particles indicates an excellent TC of 325 W·m−1·K−1. Their TCs lay between the theoretical estimated bounds. In contrast, the composite with 100 μm particles demonstrates low density as well as poor TC due to its high porosity and weak interfacial bonding. Its TC is even considerably less than the lower bound of the predicted value. Using larger diamond particles can further enhance thermal conductive performance only based on the premise that highly dense composites of strong interfacial bonding can be obtained.  相似文献   

5.
SiC/MoSi2 composites were synthesized at different temperatures by spark plasma sintering using Mo, Si and SiC powders as raw materials. The phase composition, microstructure and mechanical properties of the as-prepared composites were investigated and the sintering behavior was also discussed. Results show that SiC/MoSi2 composites are composed of MoSi2, SiC and trace amount of Mo4.8Si3C0.6 phase and exhibit a fine-grain texture. During the synthesis process, there was an evolution from solid phase sintering to liquid phase sintering. When sintered at 1600 °C, the SiC/MoSi2 composites present the most favorable mechanical properties, the Vickers hardness, bending strength and fracture toughness are 13.4 GPa, 674 MPa and 5.1 MPa·m1/2, respectively, higher 44%, 171%, 82% than those of monolithic MoSi2. SiC can withstand the applied stress as hard phase and retard the rapid propagation of cracks as second phase, which are beneficial to the improved mechanical properties of SiC/MoSi2 composites.  相似文献   

6.
采用双步球磨法和放电等离子烧结技术制备细晶Ti-45Al-2Cr-2Nb-1B-0.5Ta-0.225Y(摩尔分数,%)合金,并研究烧结温度、显微组织和力学性能之间的关系。结果表明:双步球磨粉末的颗粒形状较规则,其颗粒尺寸为20~40μm,主要由TiAl和Ti3Al相组成。放电等离子烧结后的块体由主相TiAl、少量的Ti3Al相及Ti2Al和TiB2相组成。当烧结温度为900°C时,烧结块体获得的主要组织是等轴晶组织,等轴晶粒尺寸大多数在100~200nm的范围内,合金的压缩断裂强度为2769MPa,压缩率为11.69%,抗弯强度为781MPa;当烧结温度为1000°C时,等轴晶粒明显长大,TiB2相明显增多,合金的压缩断裂强度为2669MPa,压缩率为17.76%,抗弯强度为652MPa。随着烧结温度的升高,合金的维氏硬度由658降低到616。压缩断口形貌分析表明,合金的断裂方式为沿晶断裂。  相似文献   

7.
烧结温度对快速凝固TiAl合金组织及力学性能的影响(英文)   总被引:1,自引:0,他引:1  
将快速凝固Ti-46Al-2Cr-4Nb-0.3Y(摩尔分数,%)合金薄带破碎成粉末,然后通过等离子烧结(SPS)制备成块体。研究烧结温度对烧结块体的组织和力学性能的影响。在1200℃烧结时得到完全致密的块体。进一步升高烧结温度对合金密度的影响不大,但是对烧结块体的显微组织及相结构有显著影响。烧结块体主要由γ和α2相组成,随着烧结温度的升高,α2相的体积分数降低,块体合金由近γ组织演变为近层片组织,且组织逐渐粗化,但是长大不明显。1260℃烧结得到的块体组织细小、均匀,没有明显微偏析,具有良好的综合力学性能,室温压缩断裂强度和压缩率分别为2984MPa和41.5%,高温(800℃)拉伸断裂强度和伸长率分别为527.5MPa和5.9%。  相似文献   

8.
In this study, the thermoelectric properties of 0.1 wt.% Cdl2-doped n-type Bi2Te2.7Sb0.3 compounds, fabrieated by SPS in a temperature range of 250°C to 350°C, were characterized. The density of the compounds was increased to approximately 100% of the theoretical density by carrying out consolidation at 350°C. The Seebeck coefficient, thermal conductivity, and electrical resistivity were dependent on a hydrogen reduction process and the sintering temperature. The Seebeck coefficient and the electrical resistivity increased with the reduction process. Also, electrical resistivity decreased and thermal conductivity increased with sintering temperature. The results suggest that carrier density and mobility vary according to the reduction process and sintering temperature. The highest figure of merit, 1.93×10−3 K−1, was obtained for the compound consolidated at 350°C for 2 min.  相似文献   

9.
Fabrication technology and mechanical properties of the Fe3Al based alloys were studied by spark plasma sintering from elemental powders (Fe-30Al, volume fraction, %) and mechanically alloying powders. The mechanically alloying powders were processed by the high-energy ball milling the elemental mixture powders with the milling time of 5, 8 and 10 min, respectively. The spark plasma sintering process was performed under the pressure of 50 MPa at 1 050 ℃ for 5 min. The phase identification by X-ray diffraction presents the Fe reacts with Al completely during the processing time. The samples are nearly full density (e.g. the relative density of sinter of raw powder is 99%). The microstructure was observed by TEM. The mechanical properties were tested by three-point bending at room temperature in air. The results show that the mechanical properties are better (e.g. bend strength of 1 500 MPa ) than those of the ordinary Fe3Al casting.  相似文献   

10.
11.
Small amounts of nanocrystalline Al2O3 particles were doped in WC-Co nanocrystalline powders to study their reinforcing effects, and spark plasma sintering technique was used to fabricate the WC-Co-Al2O3 nanocomposites. Experimental results show that the use of Al2O3 nanoparticles as dispersions to reinforce WC-Co composites can increase the hardness, especially the transverse rupture strength of the WC-Co hardmetal. With addition of 0.5%(mass fraction) Al2O3 nanoparticles, the spark plasma sintered WC-TCo-0. 5Al2O3 nanocomposites exhibit hardness of 21.22 GPa and transverse rupture strength of 3 548 MPa. The fracture surface of the WC-TCo-0.5Al2O3 nanocomposites mainly fracture with transcrystalline rupture mode. The reinforcing mechanism is maybe related to the hindrance effect of microcracks propagation and the pinning effect for the dislocations movement, as well as the residual compressive strength due to the Al2O3 nanoparticles doped.  相似文献   

12.
研究了TiH2-45Al-0.2Si-5Nb未球磨和球磨两种粉末的放电等离子烧结组织特征以及经1000℃、100h高温氧化后的氧化性能.结果表明,未经球磨粉末的烧结组织由层片状TiAl和Ti3Al相组成,而经球磨粉末的烧结组织由细小的颗粒状TiAJ和Ti3Al相组成.球磨粉末的烧结组织氧化速度低于未球磨粉末的烧结组织,形成了连续的Al2O3和TiO2混合氧化物层,具有良好的高温抗氧化性.  相似文献   

13.
放电等离子烧结时间对高密度W-7Ni-3Fe合金组织性能的影响   总被引:1,自引:0,他引:1  
利用放电等离子烧结技术制备高密度W-7Ni-3Fe合金,研究了烧结保温时间对合金致密度、物相、显微组织以及力学性能的影响。结果表明,在1200℃烧结5~14 min后,合金均能实现充分致密化,保温时间对相对密度影响较小。合金中的W晶粒随保温时间的延长开始尺寸变化不大,烧结11 min以上才明显长大,但大多数W晶粒尺寸仍小于5μm。烧结时间超过8min,合金中新出现一种灰色的富W组织。随保温时间延长,合金的洛氏硬度下降不大,然而抗弯强度却明显上升。合金弯曲断口形貌在较短保温时间以沿晶断裂为主,粘结相的延性撕裂和W晶粒的解理断裂随烧结时间延长逐渐增多。  相似文献   

14.
分别用粉末冶金无压烧结和热压烧结技术制备了Ag-Al电接触材料,并通过场发射扫描电镜(FE-SEM)分析了其显微组织及成分分布,探讨了两种制备工艺及含铝量对Ag-Al电接触材料密度、硬度、电导率和耐压强度的影响。结果表明,热压烧结样品力学、电学性能均优于无压烧结样品,且热压样品随着含铝量增加,硬度、耐压强度升高,电导率下降;耐压强度主要受含铝量影响;烧结方式影响Ag-Al电接触材料显微组织,进而影响电弧侵蚀后Ag-Al电接触材料表面形貌和成分分布。  相似文献   

15.
16.
17.
采用机械合金化和放电等离子烧结工艺制备细晶Ti-43Al-9V合金,研究不同烧结温度与显微组织和力学性能之间的关系。结果表明:机械球磨后粉末形状规则,尺寸在5~30μm之间,烧结所得块体材料主要由γ-TiAl、α2-Ti3Al和少量B2相组成。烧结温度为1150°C时,获得的等轴晶粒尺寸为300nm~1μm。烧结温度升高到1250°C时,等轴晶粒的尺寸明显增大,显微硬度从HV592降低到HV535,抗弯强度从605降低到219MPa,压缩断裂强度从2601降低到1905MPa,压缩率从28.95%降低到12.09%。  相似文献   

18.
To improve the bioactivity of Ti-Nb-Zr alloy, Ti-35Nb-7Zr-xHA (hydroxyapatite, x=5, 10, 15 and 20, mass fraction, %) composites were fabricated by spark plasma sintering. The effects of the HA content on microstructure, mechanical and corrosion properties of the composites were investigated utilizing X-ray diffraction (XRD), scanning electron microscope (SEM), mechanical tests and electrochemical tests. Results show that all sintered composites are mainly composed of β-Ti matrix, α-Ti and metal–ceramic phases (CaO, CaTiO3, CaZrO3, TixPy, etc). Besides, some residual hydroxyapatites emerge in the composites (15% and 20% HA). The compressive strengths of the composites are over 1400 MPa and the elastic moduli of composites ((5%–15%) HA) present appropriate values (46–52 GPa) close to that of human bones. The composite with 15% HA exhibits low corrosion current density and passive current density in Hank's solution by electrochemical test, indicating good corrosion properties. Therefore, Ti-35Nb-7Zr-15HA composite might be an alternative material for orthopedic implant applications.  相似文献   

19.
Three kinds of Ni and Al powder mixtures with nominal composition Ni75Al25 were employed to prepare Ni3Al alloys by spark plasma sintering(SPS) process. The raw powders include fine powder, coarse powder and mechanically-alloyed fine powder. The effects of powder characteristics and mechanical alloying on structure and properties of sintered body were investigated by scanning electron microscopy(SEM), X-ray diffraction(XRD), bending test and Vickers hardness measurements. For all mixture powders near fully dense Ni3Al alloys (relative density〉99.5%) are obtained after sintering at 1150℃ for 5 min under 40 MPa. However a small fraction of Ni can be reserved for alloy from coarse powders. The results reveal that grain size is correlated with particle character of raw powder. Ni3Al alloy made from mechanically-alloyed fine powder has finer and more homogenous microstructure. The hardness of all alloys is similar varying from HV470 to 490. Ni3Al alloy made from mechanically-alloyed fine powder exhibites higher bending strength (1 070 MPa) than others.  相似文献   

20.
由于具备较高的热导率,铜/金刚石复合材料已成为应用于电子封装领域的新一代热管理材料。采用放电等离子烧结工艺(SPS)成功制备含不同金刚石体积分数的Cu/金刚石复合材料,研究复合材料的相对密度、微观结构均匀性和热导率(TC)随金刚石体积分数(50%、60%和70%)和烧结温度的变化规律。结果表明:随着金刚石体积分数的降低,复合材料的相对密度、微观结构均匀性和热导率均升高;随着烧结温度的提高,复合材料的相对密度和热导率不断提高。复合材料的热导率受到金刚石体积分数、微观结构均匀性和复合材料相对密度的综合影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号