首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
在高精密平面磨床上,使用金刚石砂轮磨削SiCp/Al复合材料,通过PCI-1712高速数据采集卡采集实验数据.在Matlab软件里,通过对不同磨削参数下的信号进行时域和小波分析,得出在砂轮速度一定时,进给速度对磨削力和磨削力比的影响最大,磨削深度次之,实验结果表明:随着进给速度和磨削深度的增大、磨削力增大,磨削力比减小。  相似文献   

2.
洪求才  赵文祥  王西彬 《机械》2006,33(8):44-46
通过一系列的实验,研究了树脂结合剂金刚石砂轮磨削铁氧体陶瓷材料时磨削力的变化规律及其特点。通过磨削对比实验方法分析磨削铁氧体陶瓷时,磨削用量对磨削力大小的影响。通过砂轮速度,磨削深度,横向进给速度和纵向进给速度等因素影响磨削力大小变化的数据及磨削力信号特征处理的分析和比较,分析了对铁氧体材料磨削时产生的磨削力影响的一些规律,表明铁氧体陶瓷磨削时磨削力变化的特有规律.  相似文献   

3.
为深入研究石英玻璃的磨削机理,设计了超声和非超声条件下石英玻璃磨削三因素四水平正交试验,开展了影响因素分析和极差分析,探究主轴转速》进给速度》磨削深度对磨削力的影响规律,构建了简化磨削力模型.通过研究实验数据发现:磨削力随进给速度增大而增大,随磨削深度的增大而增大,随机床主轴转速的增大而减小.在超声环境下,磨削力相对于非超声环境下减小了40%~60%,超声辅助加工对刀具的磨损较小,有利于减小加工成本.  相似文献   

4.
磨削力对磨削淬硬层的形成及其质量具有重要影响。本研究在MKL7132X6/12型数控强力成形磨床上对42CrMo钢进行磨削淬硬加工试验。试验结果表明,磨削深度、磨削速度和工件进给速度都是影响切向和法向磨削力的因素,且磨削深度的影响程度最大,工件进给速度最小。切向和法向磨削力会随着磨削深度和工件进给速度的增加、磨削速度的降低而增大。对磨削力比影响程度最大的是磨削深度,最小的是磨削速度。磨削力比会随着磨削速度、磨削深度的增加或工件进给速度的降低而增大。本研究为提高磨削淬硬加工质量提供了依据。  相似文献   

5.
为了研究氧化锆陶瓷超声磨削机理,分别设计了超声和非超声磨削情况三因素-三水平的正交试验,基于实验数据开展了磨削力影响因素分析和极差分析,并构建了磨削力模型。研究结论如下:超声磨削情况下,磨削力随主轴转速的提高而降低,随磨削深度、进给速度的增大而增大;沿进给方向的力和沿磨削宽度方向的磨削力主次影响顺序为主轴转速、磨削深度、进给速度,沿磨削深度的磨削力主次影响顺序为主轴转速、进给速度、磨削深度;非超声磨削情况下,磨削力随主轴转速和磨削深度的增大而降低,随进给速度的增大而增大;三个方向的磨削力的主次影响顺序都为主轴转速、进给速度、磨削深度。对比超声和非超声,发现超声磨削情况下可获得20%~30%磨削力减小,且超声对金刚石磨头的磨损程度最小。研究可为氧化锆陶瓷磨削机理研究提供重要参考。  相似文献   

6.
为了提高铣刀磨削质量,以铣刀磨制过程中的磨削力为对象,通过求取砂轮与铣刀接触线的表达方程,建立铣刀螺旋槽磨削过程磨削力求解模型,讨论磨削力对铣刀磨削质量的影响。以影响磨削力的主要因素铣刀进给速度及磨削深度为变量,提出等进给速度及变进给速度两种减小磨削力、降低应变的优化方案。通过调节进给速度及磨削深度,在保证磨削效率不变的情况下,减小磨削力,从而减小螺旋槽在磨削过程中因磨削力而产生的形变量。建立铣刀三维模型,导入ANSYS的Workbench中进行磨削过程仿真,得出具体形变量,验证磨削优化方案的准确性。  相似文献   

7.
为探索金刚石砂轮磨削HIPSN(热等静压氮化硅)陶瓷时,磨削工艺参数对法向、切向磨削力的影响情况。设计正交试验重点研究磨削深度、砂轮线速度、工件进给速度等磨削工艺参数对法向、切向磨削力的影响规律,同时基于ABAQUS建立单颗金刚石磨粒切削HIPSN陶瓷有限元仿真模型,将试验结果与仿真结果进行对比。结果表明,提高砂轮线速度、减小磨削深度、降低工件进给速度,法向、切向磨削力均减小。磨削力比在(8~15)之间。试验结果与仿真输出结果基本一致,验证了该仿真模型的正确性。  相似文献   

8.
分析了影响磨削量的主要因素,包括砂带的磨削寿命、砂带线速度、机器人进给速度、浮动梁气压、相邻路径间距、接触轮特性、砂带摆动幅度、磨削液和磨削振动,建立了完整的磨削量与加工参数的数学模型.通过磨削实验分析了影响磨削量的主要因素,机器人砂带磨削系统对机器人进给速度变化的响应有延迟现象,修形磨削时,相邻两磨削点间的距离需要与机器人进给速度变化情况相匹配.根据实验数据对磨削实验进行了拟合建模.得到了砂带寿命数学模型、磨削量和砂带线速度关系模型、磨削量和浮动梁气压关系模型、磨削量和机器人进给速度关系模型.最后,通过力反馈控制进行了修形磨削实验和叶片磨削实验,磨削精度和力控制精度满足设计要求.  相似文献   

9.
针对石材切削加工过程中切削参数的变化和选择,通过试验研究了磨削速度、进给速度和磨削深度对切削力的影响规律;研究了切削参数变化及磨削时间与刀具磨损之间的关系;显微观察了金刚石砂轮的磨损状况。试验结果表明,磨削力随着磨削深度和进给速度的增加而增大、随着磨削速度的增大而减小;在开始磨削至32延长米时,金刚石砂轮的磨损较大,在后续加工中砂轮磨损量随着磨削参数的增大而平缓增加,当加工到480延长米时,砂轮磨损量又明显增加。  相似文献   

10.
在实际磨削38CrMoAl渗氮钢过程中,存在磨削烧伤情况。本文分别采用白刚玉砂轮和微晶刚玉砂轮磨削38CrMoAl渗氮钢,对比研究了不同磨料类型刚玉砂轮对磨削力和表面粗糙度的影响规律。试验结果表明:相较于白刚玉砂轮,微晶刚玉砂轮磨削时磨削力降低了14.2%。基于正交试验方法,通过微晶刚玉砂轮平面磨削试验,探究了磨削工艺参数对磨削力和工件表面粗糙度的影响。结果分析表明:磨削深度对磨削力影响最大,其次是工件进给速度和砂轮转速;对于工件表面粗糙度而言,工件进给速度的影响最大,其次是砂轮速度和磨削深度。最终采用微晶刚玉砂轮对38CrMoAl渗氮钢齿轮样件进行批次加工,结果显示无磨削烧伤发生,且磨削表面质量得到了显著提高。  相似文献   

11.
A grindability study of chopped strand mat glass fiber reinforced polymer laminates (CSM GFRP) has been carried out to evaluate the effects of abrasive types on grinding force ratio and area roughness at varying grinding parameters such as speed, feed and depth of cut. Performances of alumina (Al2O3) and cubic boron nitride (CBN) wheels were compared. Both wheels delivered the maximum grinding force ratios at low speed, high feed and low depth of cut. Alumina wheel produced smoother surface when grinding at low speed, low feed and high depth of cut. CBN wheel, on the other hand, gave smoother surface at high feed and low depth of cut conditions, regardless of speed. With CBN wheel, it is likely that a single grinding condition exists that maximizes grinding force ratio and minimizes area roughness. The findings indicate that CBN wheel exhibited higher grinding force ratio than alumina grinding wheel in general. CBN grinding wheel also outperformed alumina grinding wheel by producing smoother ground surface in most cases.  相似文献   

12.
为避免不锈钢磨削中发生砂轮堵塞,减轻磨削烧伤的程度,提高加工效率,优化加工工艺,对不锈钢进行超高速磨削试验研究。在高速/超高速磨削条件下,研究了不同砂轮线速度、工件进给速度和进给量对不锈钢磨削的磨削力、表面粗糙度和表面形貌的影响作用,并检测了不同工况下的砂轮表面状态。研究结果表明,不锈钢在超高速磨削状态下,选择合理的工作台速度和磨削深度能有效提高加工效率,同时又能保证磨削质量。

  相似文献   

13.
王艳  徐九华  杨路 《光学精密工程》2015,23(7):2031-2042
分析了高速精密磨削9CrWMn冷作模具钢的机理,采用DEFORM软件对高速磨削模具钢9CrWMn过程进行了磨削力仿真。使用高精密高速平面磨床对模具钢9CrWMn进行了高速精密磨削试验,并在线测量了多种工况下的磨削力。结果表明:在其他两组工艺参数不变时,随着工件进给速度增加,磨削力特别是法向磨削力会增大近45%;法向磨削力和切向磨削力随着砂轮的线速度上升而下降,法向磨削力下降近33%;磨削深度对磨削力影响较大,大的磨削深度对法向磨削力的影响尤其显著,可使法向磨削力增大近100%。分析了磨削工艺参数对比磨削能的影响规律,结果显示:随着磨削深度和工件进给速度的增大,比磨削能呈比较明显的下降趋势,符合磨削加工中的尺寸效应;随着砂轮线速度的增大,比磨削能呈上升趋势。最后,对高速磨削前后工件表面的微观形貌进行了对比分析,磨削力试验结果和仿真理论分析相一致。  相似文献   

14.
通过简化并建立单颗磨粒磨削模型,采用ANSYS LS-DYNA进行对6061-T651特种铝合金磨削过程的理论研究和仿真分析,总结了单颗磨粒的磨削速度、磨削深度等工艺参数对磨削力大小以及磨屑的影响。研究表明:随着磨削速度的增加,单个磨料颗粒的磨削力减小,并且递减速率呈先增大后减小的趋势;而磨削深度的增加则会使单个磨料颗粒的磨削力增大,且递增速率逐渐减缓。磨削过程中,磨屑形状受加工参数的影响,其中,磨削深度对磨屑形状的影响比磨削速度对磨屑形状的影响更大。  相似文献   

15.
小口径非球面玻璃透镜因具有极高的成像质量和成像分辨率而被广泛应用于中高档镜头中。在线电解修整(Electrolytic In-Process Dressing,ELID)磨削作为高效的镜面磨削方法被广泛应用于硬、脆等加工材料的镜面磨削。在精密平面磨床上安装喷嘴电解ELID磨削系统对硬质合金材料进行了喷嘴电解方式ELID磨削试验研究。实验分析了磨削力随着砂轮转速、工作台进给速度、磨削深度三个磨削工艺参数变化的规律。同时,相同的磨削参数下,比较喷嘴电解方式ELID磨削和普通磨削的磨削力研究。试验结果表明,喷嘴电解方式ELID磨削能明显降低磨削力,与普通磨削相比较,能更好的实现硬质合金材料的超精密磨削加工。  相似文献   

16.
部分稳定氧化锆PSZ高效深磨磨削力试验研究   总被引:3,自引:0,他引:3  
本文对部分发稳定氧化锆陶瓷(Panialy stabilized Zirconia,PSZ)在高效深磨条件下的磨削力进行了试验研究,分析了各种因素对磨削力的影响,并与其它磨削方式的PSZ陶瓷作了比较和综合分析。分析表明:PSZ陶瓷在高效深磨条件下,当比材料去除率一定时,工作台速度的变化对磨削力的影响比切深的变化对磨削力的影响大;磨削力与普通磨削相比较大,比材料去除率是普通磨削的几十倍;材料去除模式以显微塑性去除为主,磨削工件表面质量较好。  相似文献   

17.
使用人造金刚石和立方氮化硼(CBN)磨料,以7.62mm子弹为载体,利用81式步枪作为加速装置,对天然大理石进行了720m/s的超高速冲击磨削实验,并对实验结果进行了分析和检测。通过对冲击区形貌的观察,发现了超高速冲击成屑现象;通过对金刚石和CBN在大理石表面所留下的细微划痕的分析,得出了脆性材料在超高速磨削条件下可以获得延性域磨削效果的结论。  相似文献   

18.
小切深磨削条件下工件表面硬化机理   总被引:1,自引:0,他引:1  
以位错运动造成塑性变形的理论为基础,深入分析了小切深条件下磨削力机械作用硬化机理和材料热相变硬化机理。通过不同磨削参数的小切深磨削硬化试验,分析磨削硬化过程中不同磨削参数条件对工件表面强化层形成的影响及其金相组织转变的情况,深入研究磨削强化层组织的形成机理。试验结果表明,小切深条件下磨削加工试件表面的硬化主要以位错运动而产生的强化层为主,提高磨削深度和降低工件进给速度会增大工件表面显微残余应力,增强试件表层硬化层的形成效果。  相似文献   

19.
提出了一种带有粗磨区倾角θ的陶瓷结合剂CBN点磨削砂轮,这种新型砂轮具有磨除率高、加工精度好等优点。研究了磨削热产生与分配理论和红外测温原理。分别用不同θ角的砂轮在一系列磨削参数条件下磨削QT700材料的阶梯轴,用Thermovision A40M热像仪测量砂轮磨削工件时接触区的平均温度,得出了偏转角α、磨削深度ap、工件轴向进给速度vf和砂轮速度vs在磨削过程中对磨削温度的影响规律,并且比较了在同一组磨削参数下,三种不同θ角砂轮对磨削温度的影响情况。  相似文献   

20.
通过确定移动热源的加载方式,运用ANSYS软件的热分析模块对磨削温度场进行仿真分析,得到了不同载荷步的温度场分布以及不同深度的节点的温度变化曲线,验证了越靠近热源磨削温度越高以及工件下层材料温升显著低于工件表面。通过改变砂轮线速度、工件进给速度和磨削深度,得到了主要的磨削参数对磨削区温度场的影响状况,证明了钛合金磨削存在临界磨削速度。在临界磨削速度附近某一区间磨削温度出现回落,因此适当的磨削速度、高的工件进给速度和小的磨削深度可以有效的减小磨削温度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号