共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
根据不同环境下不同说话人语音特征各阶差异较大的特点,对矢量量化算法进行改进,提出一种基于动态权值改进的矢量量化(VQ)方法。实验结果证明,该方法提高说话人识别系统的识别率。 相似文献
3.
独立分量分析方法能够将线性混合信号进行分离,得到统计独立的源信号,能用于提取组合语音的特征基函数。倒谱矢量符合ICA变换的假设条件,用ICA方法对MFCC特征进行转换得到ICA特征基,继而用于说话人识别,建立了一个基于独立分量分析的说话人识别系统。实验结果表明,在噪声环境下此系统具有更高的识别率。 相似文献
4.
Delta特征是反映语音信号帧间动态特征的重要特征,本文对LPC和它的Delta特征进行了具体实例求解,并对计算结果进行了分析,探讨了将它用于说话人识别系统的有效性和可行性。 相似文献
5.
深入研究了基于多通道信号子空间的语音增强算法原理,对算法中各个参数对性能的影响进行了深入剖析.同时给出一种选取噪声方差的简单且有效的方法,并通过研究分析,证明多通道信号子空间算法不仅消噪明显而且对语音的损伤微小,而且相比于单通道子空间语音增强算法除了性能上的提升外,还没有导致计算量的增加。最后将多通道子空间语音增强算法用于说话人识别系统.并与其它多通道语音增强算法(延迟求和波束形成、波束形成后维纳滤波、线性约束最小方差波束形成)进行了对比.实验表明多通道信号子空间语音增强算法在多种噪声环境下均可有效的提高说话人识别系统的识别性能。 相似文献
6.
7.
8.
针对噪声环境下说话人识别率较低的问题,提出一种基于正规化线性预测功率谱的说话人识别特征。首先对语音信号线性预测分析和正规化处理求出语音频谱包络,然后通过伽马通滤波器组得到对数子带能量,最后对特征参数进行离散余弦变换,得到了一种说话人识别特征正规化线性预测伽马通滤波器倒谱系数(Regularized Linear Prediction Gammatone Filter Cepstral Coefficient,RLP-GFCC)。仿真结果表明,在噪声环境说话人辨认试验中,相比传统特征美尔频率倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)和伽马通滤波器倒谱系数(Gammatone Filter Cepstral Coefficient,GFCC)的系统识别率得到了明显提高,对噪声环境的鲁棒性得到了增强。 相似文献
9.
针对复杂噪声环境下识别性能显著降低的问题,提出一种用于说话人识别系统前端的双微阵列语音增强算法。该算法采用的是相干滤波和频域宽带最小方差无畸变响应波束形成器后置结合改进的维纳滤波器。其基本原理是首先求出双微麦克风阵列信号中两个相邻通道间的相干函数,再利用通道间信号的相干性来进行初始噪声抑制。其次,通过一个频域宽带最小方差无畸变响应(Minimum Variance Distortionless Response,MVDR)波束形成器保留目标声源方向的信号并抑制其他方向的信号干扰,再通过改进的维纳滤波器去除噪声残留提升语音质量。最后,使用梅尔频率倒谱系数(Mel Frequency Cepstral Coefficients,MFCC)和伽马通滤波器组频率倒谱系数(Gammatone Filter-bank Frequency Cepstral Coefficients,GFCC)对增强后的语音信号做特征参数提取并进行说话人识别。仿真过程采用声学人工头模拟双耳采集数据,实验结果表明,该语音增强算法在复杂噪声环境下能够获得较好的增强效果,能有效提升说话人识别系统的识别率。 相似文献
10.
11.
12.
13.
为了克服噪声对语音识别系统的影响,提出了一种基于主曲线的说话人自适应方法,这种方法可以通过一组主曲线描述所有状态的特征统计信息和码本参数之间的关系,并利用特征统计量在主曲线上的投影更新码本.当有背景噪声存在时,这种方法可以有效修正状态的特征统计信息以减弱或去掉噪声的影响.在863大词汇量连续语音识别数据库上的实验结果证明:这种方法相对于基线以及本征音说话人自适应算法,系统识别性能都有明显的提高. 相似文献
14.
动态时间规整方法是一种以动态规整为基础的模式匹配方法,在模式识别特别是语音识别领域中有着广泛的应用。本文介绍将动态时间规整方法应用于说话人识别的方案,实验研究的结果表明,动态时间规整方法应用于说话人识别是行之有效的,而且实验的错误率可以降低到静态时间规整说话人识别实验的错误率的一半。 相似文献
15.
16.
从两个方面对确认系统进行了改进,在模型方面,扩展了MixMax模型,对复杂的背景噪声等干扰因素在训练说话人模型的同时也进行了建模,最大程度上消除噪声的影响,对说话人的特征分布进行了更真实的表征;在得分方面,提出了一种改进的得分规整策略,基于EMD距离从所有背景说话人集合中自适应选择最接近的一定数量的模型构成说话人特定的背景集合,从而进行得分归一化。实验结果表明,该方法能够同时针对说话人和测试环境的不同进行补偿,进一步降低了误识率和漏警率,获得了很好的确认性能。 相似文献
17.
为了对生产线上的轮毂进行识别分类,本文开发了一套基于OpenCV和MFC平台的轮毂型号在线识别系统.首先提取轮毂的高度、外直径、中心孔直径、辐条数目、幅窗的周长面积比等特征参数.其中,通过图像预处理、边缘检测、圆拟合、系统标定等方法获取轮毂外直径,来表征各类轮毂的尺寸;通过提取辐条数目、中心孔直径、幅窗的周长面积比等具有旋转不变性的常量来表征各类轮毂的形状.然后为提取到的特征参数生成序列号,作为型号识别的特征参数.最后将生成的特征序列号与模板库中的标准数值进行比对,达到在线实时分类的效果.实验结果表明:该系统的识别准确率为98.7%,能够有效地完成轮毂的在线识别分类,为轮毂缺陷检测的自动化、智能化提供了保障. 相似文献
18.
提出了一种在高斯混合模型中嵌入时延神经网络的方法。它集成了作为判别性方法的时延神经网络和作为生成性方法的高斯混合模型各自的优点。时延神经网络挖掘了特征向量集的时间信息,并且通过时延网络的变换使需要假设变量独立的最大似然概率(ML)方法更为合理。以最大似然概率为准则,把它们作为一个整体来进行训练。训练过程中,高斯混合模型和神经网络的参数交替更新。实验结果表明,采用所提出的模型在各种信噪比情况下的识别率都比基线系统有所提高,最高能达到21%。 相似文献
19.
20.
以提取得到的被动声呐目标功率谱特征为基础,采用二进制粒子群(Binary Particle Swarm Optimization, BPSO)优化算法和k最近邻(k-Nearest Neighbor, KNN)分类算法相结合的BPSO-KNN算法进行特征选择和参数优化,分别用KNN分类算法和BPSO-KNN分类算法对实际得到的四类海上被动声呐目标进行分类识别。结果表明,BPSO-KNN算法可对提取的功率谱特征进行特征优化选择,并对KNN分类器进行参数优化,提高了对四类目标的分类精度。该算法在被动声呐目标分类识别方面有参考价值。 相似文献