首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 984 毫秒
1.
采用硫酸亚铁和过氧化氢所构成的Fenton试剂,对经生化处理后的焦化废水进行Fenton高级氧化深度处理,重点考察了废水初始pH,FeSO4·7H2O、H2O2及PAM投加量对焦化生化废水处理效果的影响。结果表明,采用Fenton高级氧化法可使经生化处理后的焦化废水中的COD、NH3-N和色度得到进一步有效去除。对于中等浓度的焦化生化废水,较适宜的Fenton氧化工艺条件:废水初始pH为8~10,FeSO4·7H2O投加量为500 mg/L,H2O2投加量为3.5 mL/L,PAM投加量为4.0 mg/L。在此条件下,COD、NH3-N和色度的去除率分别可达85.9%、97.3%和84.6%。  相似文献   

2.
TiO2光催化氧化焦化废水的研究   总被引:5,自引:0,他引:5  
以锐钛矿型TiO2为光催化剂,高压汞灯为光源对实际焦化废水进行了光催化降解的研究,主要探讨了TiO2用量、通入空气量、光照时间、溶液初始pH值和H2O2与处理水体积比等因素对焦化废水COD去除率和脱色率的影响,从而确定处理的最佳条件。结果表明:TiO2光催化氧化对焦化废水CODCr和色度具有显著的去除效果,最佳实验条件为:TiO2用量0.8g.L-1,鼓入空气量0.25m3.h-1,紫外灯光照时间1.5h,溶液pH=10,外加氧化剂H2O2与焦化废水的体积比为0.3。  相似文献   

3.
在旋转填充床(RPB)中,研究了O3/Fenton工艺处理模拟焦化废水的效果。考察了Fe2+浓度、旋转床转速、液体流量、气体流量及初始p H值对化学需氧量(COD)去除率及溶液中苯酚、苯胺、喹啉和NH3-N去除率的影响。结果表明,在p H值为6,温度25℃,液体流量20 L/h,气体流量5 L/h,转速1 000 r/min,H2O2的浓度为6.5 mmol/L,Fe2+浓度为0.4 mmol/L的条件下,模拟焦化废水的COD的去除率达到43.57%,废水中苯酚的去除率达81.56%,苯胺为100%,喹啉为81.17%,NH3-N为100%。  相似文献   

4.
UV/Fenton氧化法对苯酚氧化效果的实验研究   总被引:4,自引:0,他引:4  
尹宏生  张婷  刘佳媛 《化工科技》2010,18(1):10-12,51
研究UV/Fenton氧化法中各个因素对降解水中苯酚的影响,确定UV/Fenton法处理苯酚废水的工艺条件。保持UV/Fenton体系的基准条件不变,通过改变H2O2浓度、n(Fe2+)∶n(H2O2)、废水初始pH值等实验条件,考察这些因素对UV/Fenton法处理苯酚废水效果的影响。结果表明:UV/Fen-ton氧化法对苯酚废水有较好的去除效果和较高的反应速率。当废水初始pH值为3.0时,经30 min的反应,苯酚去除率达到99%,COD去除率达到86%。但是苯酚废水COD去除率滞后于苯酚去除率。UV/Fenton法能够在较短的时间内去除苯酚和COD,H2O2浓度、n(Fe2+)∶n(H2O2)对处理效果影响较大,H2O2浓度决定苯酚去除率和COD去除率,而n(Fe2+)∶n(H2O2)是影响降解速率的主导因素。  相似文献   

5.
城市生活污水回用于电厂的组合高级氧化技术   总被引:1,自引:0,他引:1  
通过实验研究比较了UV/O3、UV/TiO2以及UV/O3/TiO2等三种高级氧化技术对城市生活污水中COD和NH3-N的去除效率,重点确定了UV/O3/TiO2法的主要工艺参数。研究结果表明,对于COD、NH3-N质量浓度分别为80~200mg/L和15—25mg/L的城市污水处理厂初沉池出水,用UV/O3/TiO2法处理2h后,COD去除率达到90%,NH3-N去除率达到70%,基本达到了回用于电厂的要求。  相似文献   

6.
应用纳米光催化法处理高浓度焦化有机废水,大量对比试验结果表明,在实验室高曝气量、纳米TiO2/Fe3O4光催化紫外光照射条件下,焦化废水中的COD和氨氮降解率可达98.91%和77.35%.采用磁性Fe3O4复合TiO2得到的纳米TiO2/Fe3O4光催化材料,既保有悬浮态纳米TiO2的高催化活性,又便于回收再利用.纳米TiO2/Fe3O4光催化剂具有较好的光催化活性,在紫外光照射下,辅以充分的空气搅拌,可以实现高浓度有机废水的较深度处理,预计在高浓度有机废水处理中有较好的应用前景.  相似文献   

7.
预处理+A2/O+活性炭过滤处理焦化废水的实验研究   总被引:2,自引:0,他引:2  
针对焦化废水的水质特性,提出了"预处理+A2/O+活性炭过滤"组合工艺处理焦化废水。通过连续实验,结果表明:该组合工艺对焦化废水中的COD、NH3-N和TN的去除效果较传统的A2/O工艺更好,COD去除率为83.46%,NH3-N去除率为74.33%,TN去除率为74.69%,SS去除率为74.25%,其中A2/O反应器总水力停留时间为30小时,最佳混合液回流比为3Q,实验结果验证了该组合工艺是可行的。  相似文献   

8.
碱性条件下UV/Fe-EDTA/H2O2预处理皮革废水   总被引:1,自引:0,他引:1  
采用UV/Fe-EDTA/H2O2体系预处理皮革废水,考察了初始pH、反应时间、H2O2和Fe-EDTA投量对COD去除率的影响,测定了处理过程中B/C变化,同时与UV/Fenton法进行了比较.结果表明:UV/Fenton法的最佳工艺条件为FeSO425 mmol/L、H2O2 300mmol/L、pH=5.加入EDTA后,反应的最佳初始pH碱移,UV/Fe-EDTA/H2O2体系于pH为8.0时,反应10 min COD去除率可达51.9%,而pH为5.0时UV/Fenton体系处理10 min后COD去除率仅37.90%.对比降解效果.UV单独作用效果不理想,60 min后COD去除率仅25%.引入UV后,Fenton法处理效果提高,60 min后COD去除率由37.0%提高至59.3%,加入EDTA后最终COD去除率与UV/Fenton法接近.经光照处理的废水B/C呈先降后升趋势,经UV/Fenton处理后,原水B/C由0.3提高至0.35,经UV/Fe-EDTA/H2O2处理的废水最终B/C略有降低.  相似文献   

9.
采用Fenton氧化对焦化废水进行了深度处理。结果表明:Fenton氧化反应迅速,可迅速降低焦化废水生化出水的COD;H2O2和Fe2+的投加量对Fenton氧化具有明显的影响;pH=3时反应体系具有最佳的COD去除效果。在H2O2投加量为1.994 mL/L,FeSO4.7H2O投加量为0.543 g/L,pH=3,温度为35℃的条件下,反应出水COD低于100 mg/L,去除率可达72.7%;Fenton氧化可有效去除生化出水中的难降解有机物。实验结果表明Fenton氧化是深度处理焦化废水的有效工艺。  相似文献   

10.
首先用改性焦炭、硫酸铝、PAM对焦化废水进行预处理,结果表明改性焦炭预处理焦化废水效果最佳,COD去除率为29.7%。然后利用Fenton试剂对焦化废水深度处理,单因素实验和正交试验结果表明,当pH=4,H2O2投加量为15mmol.L-1,[Fe2+]/[H2O2]=1∶10,反应时间30min时,处理效果最佳,COD去除率可达92%。各因素对COD去除率影响的强弱顺序为:pH〉H2O2投加量〉Fe2+/H2O2的摩尔比。  相似文献   

11.
采用连续式超临界水氧化小试装置,在实验室以配制的模拟焦化废水进行试验研究。以过氧化氢作为氧化剂,研究了超临界水氧化反应的温度、压力、氧化剂比例K、反应物初始浓度等参数对废水中污染物去除效果的影响。同时以贵州省某焦化厂的实际焦化废水进行试验,结果表明在温度为450℃、压力为25MPa、K为1.3、模拟废水原始COD。浓度为3706.5mg/L时,出水COD。为53.9mg/L,COD去除率达98.55%;当温度为500℃、压力为25MPa、K为2.0时,实际焦化废水硫化物、COD、氨氮去除率分别为99.54%、94.69%、48.16%,氨氮去除率相对较低,其试验参数需进一步优化。  相似文献   

12.
Fenton试剂-活性炭吸附处理焦化废水的研究   总被引:4,自引:0,他引:4  
王春敏  吴少艳  王维军 《辽宁化工》2006,35(7):388-390,406
对Fenton试剂-活性炭吸附联用技术处理焦化废水进行了研究。首先考察了pH值、H2O2投加量、[Fe^2+]/[H2O2]等因素对Fenton试剂氧化处理效果的影响以及Fenton试剂氧化阶段H2O2投加量对活性炭吸附效果的影响;然后考察活性炭投加量、吸附时间、pH值等因素对活性炭吸附阶段处理效果的影响。结果表明,Fenton试剂-活性炭吸附工艺处理焦化废水的最佳操作条件为:Fenton试剂氧化阶段H2O2投加量为55mmol/L,[Fe^2+]/[H2O2]=1:10,初始pH=3;活性炭吸附阶段活性炭投加量为2.5g/L,pH=3,吸附时间30min。在此操作条件下,焦化废水COD去除率达97.5%。  相似文献   

13.
MBR和BAF用于城市污水深度处理的工艺特性比较   总被引:1,自引:0,他引:1  
采用膜生物反应器(MBR)和曝气生物滤池(BAF)2种工艺分别对以生活污水为主的城市污水进行深度处理,以达到污水回用的目的.中试结果表明,在平均水温仅为5℃的情况下,MBR工艺的处理效果明显优于BAF,MBR_4~+工艺对COD、BOD_5、NH_4~+-N和TP的去除率分别可以达到75%、92%、95%和90%,,而BAF对COD、BOD_5、NH_4~+_N和TP的去除率仅为70%、78%、29%和82%.经核算,MBR和BAF的污水处理运行费用分别为0.82元·m~(-3)和0.55元·m~(-3).与BAF相比,MBR具有处理效果优良、出水稳定、占地面积少,且维护管理方便等特点,因此,在以污水回用为目的的实际工程中推荐采用MBR工艺.  相似文献   

14.
采用新型蜂窝胞壁厌氧生物滤池用于A/A/O工艺处理焦化废水,研究了蜂窝胞壁厌氧生物滤池内COD的去除和氨化效果,以及pH、温度对氨化率的影响情况.结果表明,在进水COD平均为2 370mg·L~(-1),NH_3-N质量浓度为165 mg·L~(-1)的条件下,蜂窝胞壁厌氧生物滤池对COD的去除率平均为37%,氨化率平均为30%,与传统的厌氧生物滤池相比,具有水力负荷高、COD去除率高、pH和温度条件要求不高等特点.再经过后续缺氧和好氧工艺,出水COD和NH_3-N均能够达到污水综合排放标准中的二级标准.  相似文献   

15.
采用湿式浸渍法制备非均相Fe/ZSM-5催化剂,以H_2O_2为氧化剂,进行高浓度难降解的焦化废水的催化氧化降解.最佳催化反应工艺条件如下:反应时间2 h,反应温度75℃,H_2O_2的加入方式为分段滴加方式,H_2O_2与Fe/ZSM-5的用量关系为90mL/L:20g/L,反应的pH为4,最佳条件下焦化废水的COD_(cr)值从原液的5080mg/L降低至约300mg/L,COD_(cr)值的去除率高达约94%.采用低温液氮吸附脱附分析催化剂的织构参数,表明载Fe催化剂呈现典型的微孔特征.  相似文献   

16.
合成环己酮1,2-丙二醇缩酮的催化剂研究进展   总被引:14,自引:0,他引:14  
综述了三氯化铁、硫酸铁、硫酸铁铵、硫酸铜、氧化亚锡、铌酸、PVC SO3H、聚氯乙烯 三氯化铁、D61和D72离子交换树脂、维生素C、固体超强酸TiO2/SO42 、活性炭固载的磷钨酸、硅钨酸、固载杂多酸盐TiSiW12O40/TiO2、HY型分子筛、改性HZSM 5分子筛及Fe ZSM 5分子筛等18种不同催化剂催化合成环己酮1,2 丙二醇缩酮的实验结果。其中三氯化铁、硫酸铁铵、氧化亚锡、PVC SO3H、聚氯乙烯 三氯化铁、D61和D72离子交换树脂、固体超强酸TiO2/SO42-、活性炭固载的磷钨酸和固载杂多酸盐TiSiW12O40/TiO2等9种催化剂的收率均在90%以上,且大多数不溶于反应体系中,易于分离,能重复使用,具有实际应用价值。  相似文献   

17.
章婷曦 《精细化工》2006,23(11):1118-1121
该文用活性炭+H2O2处理了分散染料废水、对氯氰苄废水、间硝基对氯苯胺废水及对甲酯膦硝基乙酰苯胺等废水。结果表明,在氧化剂的用量为(质量分数为30%,全文同)5~15 mL/L废水,催化剂活性炭用量为0.5~1 g/mL H2O2时,加或不加Fe2+,搅拌或曝气一定时间,能使化学耗氧量(COD)值从3 000 mg/L降至200~400 mg/L。同时介绍了与内电解和稳定塘相结合的处理分散染料废水的实际工艺过程和处理效果。结果表明,经处理后的水质可以达到国家二级排放标准,处理成本为6.5元/t.  相似文献   

18.
O_3-H_2O_2与活性炭负载TiO_2预处理晚期垃圾渗滤液   总被引:1,自引:0,他引:1  
采用O_3-H_2O_2高级氧化结合催化O_3氧化技术对晚期垃圾渗滤液进行预处理,考察了颗粒活性炭负载二氧化钛(TiO_2/GAC)催化剂的催化效果,并研究了反应体系中O_3和H_2O_2投加量以及pH等因素对COD去除效果的影响.结果表明,当O_3投加量为1.8 g·L~(-1),H_2O_2投加量为0.27 g·L~(-1),催化剂投加质量分数为15%时,反应90min的COD去除率达到40%;对出水调节pH≥11.4,经过沉淀后,COD去除率提高到58%.出水澄清透明,BOD5/COD从<0.1提高到0.26.水质得到较大改善,可生化性明显提高,为后续的生化处理工艺起到较好的预处理作用.  相似文献   

19.
以四水合钼酸铵〔(NH4)6Mo7O24.4H2O〕、磷酸和2-氨基-4-甲基吡啶(AP)为原料,按一定比例在180℃恒温水热法反应5 d,合成了超分子化合物(APH)2(H4P2Mo5O23).2H2O,收率为80%。用红外光谱、紫外可见光谱、氢核磁共振谱、X射线粉末衍射和TG-DTA对产物进行了表征。结果表明,杂多阴离子保持结构不变,而有机阳离子红外和紫外光谱发生了蓝移,有机阳离子和杂多阴离子以静电力和氢键作用形成了超分子化合物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号