首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A novel method for the preparation of Al2O3–TiN nanocomposites was developed. A mixture of TiO2, AlN, and Ti powder was used as the starting material to synthesize the Al2O3–TiN nanocomposite under 60 MPa at 1400°C for 6 min using spark plasma sintering. X-ray diffractometry, scanning electron microscopy, and transmission electron microscopy were used for detailed microstructural analysis. Dense (up to 99%) nanostructured Al2O3–TiN composites were successfully fabricated, the average grain size being less than 400 nm. The fracture toughness ( K I C ) and bending strength (σb) of the nanostructured Al2O3–TiN composites reached 4.22±0.20 MPa·m1/2 and 746±28 MPa, respectively.  相似文献   

2.
A dense alumina-silicon carbide (Al2O3–SiC) nanocomposite was synthesized in situ from the reaction of mullite, aluminum, and carbon by reactive hot pressing (RHP). Transmission electron microscopy investigation showed that in situ -formed, nanometer-sized SiC particles were mainly entrapped in the matrix grains, whereas submicrometer-sized particles were located at the grain boundaries or triple points of the Al2O3. In addition, no amorphous phase was observed at the interfaces of the Al2O3 and SiC grains, which indicated strong direct bonding. Fracture-surface analysis by scanning electron microscopy revealed an intrafracture mode. The bending strength of the nanocomposite RHP-treated at 1800°C was 795 ± 160 MPa, and the fracture toughness, measured by the indentation method, was 3.1 MPa·m1/2.  相似文献   

3.
A self-toughened gehlenite (2CaO·Al2O3·SiO2 or "C2AS") ceramic with randomly distributed platelet grains was prepared by the organic steric entrapment (PVA) route. The gehlenite ceramic had a density of 2.698–2.875 g/cm3, corresponding to a relative density of 90%–96%. The platelet gehlenite grains had an average thickness of 3.6±0.8 μm and a width of 12.9±3.7 μm, respectively, with an average aspect ratio of 3.6. The three-point bending strength, fracture toughness, and Young's modulus attained were 142.1±12.1 MPa, 2.32±0.12 MPa·m1/2, and 108±6.8 GPa, respectively. Fractography as well as Vickers indentation crack propagation profiles showed that crack deflection, crack blunting, and pinning effects due to the randomly distributed platelet grains were considered to be responsible for the good mechanical properties of the gehlenite ceramic.  相似文献   

4.
The rates of densification and the mechanical properties of pure Al2O3 and ZrO2-toughened Al2O3 (ZTA) have been investigated as a function of the temperatures and time schedules used for hot isostatic pressing (HIP) as a postsintering heat treatment for samples which had already been pressureless sintered in air at 1460°C for 45 min. ZTA hot isostatically presed at 1400°C had a finer grain size and a narrower grain size distribution than ZTA hot isostatically pressed at 1600°C. At both HIP conditions, the density which could be obtained was almost the maximum theoretical density. The amount of grinding-induced and fracture-induced monoclinic ZrO2 formed as a result of the tetragonal → monoclinic martensitic transformation in ZTA was higher in the samples hot isostatically pressed at 1400°C. ZTA hot isostatically pressed at 1600°C and 100 MPa had fewer flaws and higher strengths than ZTA hot isostatically pressed at 1400°C for the same time, with a gradual improvement in mechanical properties with increasing HIP time at each of these two temperatures. The best mechanical properties were obtained from ZTA hot isostatically pressed at 100 MPa and 1600°C for 1 h: these specimens had a four-point bend strength of 940 ± 15 MPa at room temperature and 540 ± 15 MPa at 1000°C and an indentation fracture toughness at room temperature of 9.4 ± 0.2 MPa·m1/2.  相似文献   

5.
An electrophoretic deposition and sintering route was used to prepare YSZ/Al2O3 composites with a compositional gradient. The YSZ content was continuously decreased from the YSZ-rich surface to the Al2O3-rich surface, Microstructural and Vickers hardness (16–24 GPa) evidence tracked the compositional development, and the indentation fracture toughness was found to vary across the section (10–3 MPa·m1/2).  相似文献   

6.
The Mode I fracture toughness ( K I C ) of a small-grained Si3N4 was determined as a function of hot-pressing orientation, temperature, testing atmosphere, and crack length using the single-edge precracked beam method. The diameter of the Si3N4 grains was <0.4 µm, with aspect ratios of 2–8. K I C at 25°C was 6.6 ± 0.2 and 5.9 ± 0.1 MPa·m1/2 for the T–S and T–L orientations, respectively. This difference was attributed to the amount of elongated grains in the plane of crack growth. For both orientations, a continual decrease in K IC was observed through 1200°C, to ∼4.1 MPa·m1/2, before increasing rapidly to 7.5–8 MPa·m1/2 at 1300°C. The decrease in K IC through 1200°C was a result of grain-boundary glassy phase softening. At 1300°C, reorientation of elongated grains in the direction of the applied load was suggested to explain the large increase in K IC. Crack healing was observed in specimens annealed in air. No R -curve behavior was observed for crack lengths as short as 300 µm at either 25° or 1000°C.  相似文献   

7.
Advanced Alumina Composites Reinforced with Titanium-Based Alloys   总被引:1,自引:0,他引:1  
New (inter)metallic-ceramic composites for high-temperature structural and functional applications are prepared via high-energy ball milling. During compaction by pressureless sintering, dense Al2O3/Ti-based alloy composites are formed that consist of inter-connected networks of the ceramic and the (inter)metallic phases. Ti-Al-V/Al2O3 and Ti-Al-Nb/Al2O3 composites show enhanced damage tolerance over monolithic Al2O3, i.e ., fracture toughnesses up to 5.6 MPa·m0.5 and bending strengths up to 527 MPa. The resistance against abrasive wear is almost doubled with respect to monolithic Al2O3 ceramic. Electrical resistivity scales with the ceramic volume fraction and ranges between 0.3 mΩ·cm and 55.1 mΩ·cm, with only a weak temperature dependence ≤700°C.  相似文献   

8.
With multi-wall carbon nanotubes (MWNTs) as reinforcement, a 12 vol% MWNTs/alumina (Al2O3) ceramic composite was obtained by hot pressing. A fracture toughness of 5.55±0.26 MPa·m1/2, 1.8 times that of pure Al2O3 ceramics, was achieved. Experimental results showed that the enveloping of carbon nanotubes (CNTs) with sodium dodecyl sulfate (SDS) is effective in changing the hydrophobicity of CNTs to hydrophilicity and improving the dispersion of CNTs in aqueous solution. Enveloped with SDS, CNTs can be homogeneously mixed with Al2O3 at a microscopic level by heterocoagulation. This mixing method can obviously improve the chemical compatibility between CNTs and Al2O3, which is important for enhancement of interfacial strength between them.  相似文献   

9.
The synergistic roles of boron carbide and carbon additions in the enhanced densification of zirconium diboride (ZrB2) by pressureless sintering have been studied. ZrB2 was sintered to >99% relative density at 1900°C. The combination of 2 wt% boron carbide and 1 wt% carbon promoted densification by removing surface oxide impurities (ZrO2 and B2O3) and inhibiting grain growth. Four-point bending strength (473±43 MPa), Vickers' microhardness (19.6±0.4 GPa), fracture toughness (3.5±0.6 MPa·m1/2), and Young's modulus (507 GPa) were measured. Thermal gravimetry showed that the combination of additives did not have an adverse effect on the oxidation behavior.  相似文献   

10.
LaPO4/Al2O3 composites were fabricated by spark plasma sintering. The effects of LaPO4 contents on the mechanical properties of the composites were investigated. The bending strength and fracture toughness can reach the maximum value of 568.2±30 MPa and 4.8±0.5 MPa·m1/2 for the composite with 16.4 vol% LaPO4 addition, respectively. The elastic moduli and hardness of the composites decreased with increasing LaPO4 content. Furthermore, the experimental results show that the composites can be machined by a tungsten carbide drill as the LaPO4 volume fraction is higher than 34.4 vol%.  相似文献   

11.
Strong Sintered Miserite Glass-Ceramics   总被引:2,自引:0,他引:2  
Strong and tough glass-ceramic materials based on the complex chain silicate miserite (KCa5open square(Si2O7)(Si6O15)F) have been prepared using standard frit sintering and internal nucleation processes. The miserite may be accompanied by crystals of fluorite, cristobalite, xonotlite, a canasite-like phase, and fluorapatite. The highly crystalline glass-ceramics have a microstructure composed primarily of interlocked, lath- or log-shaped miserite crystals with pronounced cleavage planes. This microstructure provides abraded flexural strength values as high as 235 MPa (34 000 psi) and fracture toughness values >3.0 MPa·m1/2. These strength and toughness values are quite high for a glass-derived material. Miserite glass-ceramics may be useful for many applications in which such strength and toughness are desired.  相似文献   

12.
A strain-gauge procedure that enables determination of the crack-tip toughness ( K I0) from bending-strength tests is described. The procedure is applied to coarse-grained alumina and yields an average K I0 value of 2.51 MPa·m1/2, with a standard deviation of 0.16 MPa·m1/2.  相似文献   

13.
Intermetallic CoAl powder has been prepared via self-propagating high-temperature synthesis (SHS). Dense CoAl materials (99.6% of theoretical) with the combined additions of ZrO2(3Y) and Al2O3 have been fabricated via spark plasma sintering (SPS) for 10 min at 1300°C and 30 MPa. The microstructures are such that tetragonal ZrO2 (0.3 μm) and Al2O3 (0.5 μm) particles are located at the grain boundaries of the CoAl (8.5 μm) matrix. Improved mechanical properties are obtained; especially the fracture toughness and the bending strength of the materials with ZrO2(3Y)/Al2O3= 16/4 mol% are 3.87 MPa·m1/2 and 1080 MPa, respectively, and high strength (>600 MPa) can be retained up to 1000°C.  相似文献   

14.
YPSZ/Al2O3-platelet composites were fabricated by conventional and tape-casting techniques followed by sintering and HIPing. The room-temperature fracture toughness increased, from 4.9 MPa·m1/2 for YPSZ, to 7.9 MPa·m1/2 (by the ISB method) for 25 mol% Al2O3 platelets with aspect ratio = 12. The room-temperature fiexural strength decreased 21% and 30% (from 935 MPa for YPSZ) for platelet contents of 25 vol% and 40 vol%, respectively. Al2O3 platelets improved the high-temperature strength (by 110% over YPSZ with 25 vol% platelets at 800°C and by 40% with 40 vol% platelets at 1300°C) and fracture toughness (by 90% at 800°C and 61% at 1300°C with 40 vol% platelets). An amorphous phase at the Al2O3-platelet/YPSZ interface limited mechanical property improvement at 1300°C. The influence of platelet alignment was examined by tape casting and laminating the composites. Platelet alignment improved the sintered density by >1% d th , high-temperature strength by 11% at 800°C and 16% at 1300°C, and fracture toughness by 33% at 1300°C, over random platelet orientation.  相似文献   

15.
Y-PSZ ceramics with 5 wt% Al2O3 were synthesized by a sol–gel route. Experimental results show that powders of metastable tetragonal zirconia with 2.7 mol% Y2O3 and 5 wt% Al2O3 can be fabricated by decomposing the dry gel powder at 500°C. Materials sintered in an air atmosphere at 1500°C for 3 have high density (5.685 g/cm3), high content of metastable tetragonal zirconia (>96%), and high fracture toughness (8.67 MPa.m1/2). Compared with the Y-PSZ ceramics, significant toughening was achieved by adding 5 wt% Al2O3.  相似文献   

16.
Al2O3–Ni composites were prepared by the reactive hot pressing of Al and NiO. The composites had a two-phase, interpenetrating microstructure and contained ∼35 vol% Ni. They exhibited an impressively high combination of strength and toughness at room temperature; the four-point bending strength was in excess of 600 MPa with a fracture toughness of more than 12 MPa·m1/2. Examination of fracture surfaces showed that Ni ligaments underwent ductile deformation during fracture. SEM analysis revealed knife-edged Ni ligaments with a limited amount of debonding around their periphery (i.e., at the Ni–Al2O3 interface), indicating a strong Ni–Al2O3 bond.  相似文献   

17.
Electroconductive Al2O3–NbN ceramic composites were prepared by hot pressing. Dense sintered bodies of ball-milled Al2O3–NbN composite powders were obtained at 1550°C and 30 MPa for 1 h under a nitrogen atmosphere. The bending strength and fracture toughness of the composites were enhanced by incorporating niobium nitride (NbN) particles into the Al2O3 matrix. The electrical resistivity of the composites decreased with increasing amount of NbN phase. For a 25 vol% NbN–Al2O3 composite, the values of bending strength, fracture toughness, Vickers hardness, and electrical resistivity were 444.2 MPa, 4.59 MPa·m1/2, 16.62 GPa, and 1.72 × 10−2Ω·cm, respectively, making the composite suitable for electrical discharge machining.  相似文献   

18.
Pressureless Sintering of Alumina-Titanium Carbide Composites   总被引:3,自引:0,他引:3  
The densification of Al2O3-TiC composites is detrimentally affected by chemical reactions between Al2O3 and TiC. These reactions must be suppressed in order to promote sintering. In this study, the specific reactions occurring in Al2O3-TiC composites were modeled, using thermodynamic calculations, and verified by experiments. The reaction between Al2O3 and TiC was suppressed by the use of specially prepared embedding powders allowing pressureless sintering to closed porosity. The Al2O3-TiC composites were subsequently hot isostatically pressed to > 99% of theoretical density without encapsulation. Typical flexural strength and fracture toughness of Al2O3-30 wt% TiC composites were 690 MPa and 4.3 MPa · m1/2, respectively.  相似文献   

19.
Simulataneous additions of SrO and Al2O3 to ZrO2 (12 mol% CeO2) lead to the in situ formation of strontium aluminate (SrO · 6Al2O3) platelets (∼0.5 μm in width and 5 to 10 μm in length) within the Ce-TZP matrix. These platelet-containing Ce-TZP ceramics have the strength (500 to 700 MPa) and hardness (13 to 14 GPa) of Ce-TZP/Al2O3 while maintaining the high toughness (14 to 15 MPa ± m1/2) of Ce-TZP. Optimum room-temperature properties are obtained at SrO/Al2O3 molar ratios between 0.025 and 0.1 for ZrO2 (12 mol% CeO2) with starting Al2O3 contents ranging between 15 and 60 vol%. The role of various toughening mechanisms is discussed for these composite ceramics.  相似文献   

20.
NiAl/10-mol%-ZrO2(3Y) composites of almost full density have been fabricated via spark plasma sintering (SPS) for 10 min at 1300°C and 30 MPa. The former intermetallic compound, which contains a trace amount of Al2O3, has been prepared via self-propagating high-temperature synthesis. The composite microstructures are such that tetragonal ZrO2 (∼0.2 μm) and Al2O3 (∼0.5 μm) particles are located at the grain boundaries of the NiAl (∼46 μm) matrix. Improved mechanical properties are obtained: the fracture toughness and bending strength are 8.8 MPa·m1/2 and 1045 MPa, respectively, and high strength (>800 MPa) can be retained up to 800°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号