共查询到20条相似文献,搜索用时 15 毫秒
1.
综述了国内外关于超支化水性聚氨酯的改性方法,重点介绍了纳米改性、环氧树脂改性、聚丙烯酸酯改性、有机硅改性和有机氟改性等超支化水性聚氨酯的改性方法,并对其发展方向进行了展望。 相似文献
2.
以异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)和二乙醇胺(DEOA)为原料,合成出了超支化聚氨酯核HBPU-0;以IPDI、聚醚多元醇(N210)、DMPA等原料合成线型聚氨酯,然后将线型聚氨酯接枝到HBPU-0上,制备出超支化聚氨酯(HBPU);再以HBPU、环氧树脂E-44、丁基缩水甘油醚单封端的四乙烯五胺(TEPA-660a)为主要原料制备出超支化聚氨酯改性水性环氧树脂固化剂。用红外光谱、核磁共振、透射电镜、扫描电镜和热失重等方法表征和测试了聚合物的结构与性能,研究了HBPU含量对固化膜断面形貌、力学性能、热性能的影响。结果表明,当HBPU质量分数达到24%时,固化膜的综合性能最佳,此时冲击强度为23.4kJ/m2,拉伸强度为52.4 MPa,5%和50%的质量热损失温度分别为287.5℃和376℃,与未改性环氧树脂相比,柔韧性和耐热性均有显著提高。 相似文献
3.
随着人们环保的意识的提升,低毒无污染的水性聚氨酯受到了极大关注,但线性的水性聚氨酯耐水性能差,稳定性不好,成膜强度低,限制了其应用。以异佛尔酮二异氰酸酯(IPDI)为硬段,聚丙二醇(PPG-1000)为软段,二羟甲基丙酸(DMPA)为亲水扩链剂,三羟甲基丙烷(TMP)为交联剂,不同比例的丙烯酸羟乙酯(HEA)和季戊四醇三丙烯酸酯(PETA)作为封端剂,合成一系列超支化水性聚氨酯(WPU)乳液。采用傅里叶红外光谱、动态光散射、万能试验机、热重分析仪和扫描电子显微镜等方法对WPU乳液和光固化成膜后的性能进行表征。结果表明:合成的WPU乳液粒径分布均匀,随着TMP和PETA含量的增加,光固化后的WPU薄膜支化度增加,薄膜的耐水性能和热稳定性提高,抗拉强度最高可达23.1MPa,同时还具有56%的断裂伸长率。该超支化薄膜可应用于木制品、皮革、地坪涂料等方面。 相似文献
4.
5.
超支化水性聚氨酯的合成与表征 总被引:1,自引:0,他引:1
以异佛尔酮二异氰酸酯(IPDI)、二乙醇胺(DEOA)及二羟甲基丙酸(DMPA)为原料,合成超支化聚氨酯核HBPU-0;以IPDI、聚四氢呋喃(PTMEG)及DMPA等原料合成线性聚氨酯,然后,将线性聚氨酯接枝到HBPU-0上,制备了一种具有超支化结构的水性聚氨酯,产物具有良好的水分散性和耐水性,其中HBPU-6的24h吸水率为6%,48h吸水率为11%,72h吸水率为18%。通过红外光谱对产物结构进行了表征。采用电子万用试验机和热失重分析仪对产物的性能进行测试,结果表明,所制备的水性超支化聚氨酯具有良好的力学性能和热稳定性,HBPU-6的拉伸强度为16.8MPa,热分解温度达到238℃。 相似文献
6.
采用熔融共混与开炼压延制备聚丁二酸丁二醇酯(PBS)和羟基封端超支化聚氨酯(HBPU)的复合膜。使用X射线衍射(XRD)、差示扫描量热(DSC)、热重分析(TG)和万能试验机对其结晶性、热性能和力学性能进行了研究;采用土埋法在陕西花园土中对复合膜进行降解。结果表明,随着HBPU的增加,复合膜结晶度均有所降低,当HBPU的质量分数为6%时达到25.7%;DSC结果表明,HBPU提高了PBS的结晶温度;随着HBPU的增加,复合材料的热稳定性有所下降;在拉力测试中,复合材料的断裂伸长率得到了显著提高,6%时复合材料的断裂伸长率达到75%;复合膜降解后表面出现明显裂纹。HBPU对PBS改性,降低了PBS的结晶度,提高了复合材料的韧性。 相似文献
7.
以甲苯-2,4-二异氰酸酯(TDI)、聚碳酸酯二醇(PCDL)、二羟甲基丙酸(DMPA)和二乙醇胺(DEOA)为原料合成了一种具有超支化结构的水性聚氨酯,产物具有良好的水溶性。通过红外光谱(FT-IR)和核磁共振(13C-NMR)对产物结构的表征,证实了产物具有超支化结构,其支化度为0.32。用高效液相色谱质谱联用仪(LC-MC)对产物的分子量进行测定,其重均分子量为1.66×104。采用电子拉力机和热失重分析仪(TG)对产物的性能进行测试,结果表明,所制备的水性超支化聚氨酯具有良好的力学性能和热稳定性,并且涂膜具有较好的耐水性。 相似文献
8.
用硬脂酸对超支化水性聚氨酯(WHBPU)进行封端,得到了硬脂酸封端的超支化水性聚氨酯(SWHBPU)。研究了硬脂酸用量对封端效率的影响,利用红外光谱、核磁共振碳谱以及官能度分析,对WHBPU和SWHBPU的结构进行了表征,并对其热性能进行了测试。结果表明,硬脂酸过量40%时,产物羟值降低至30.09 mg KOH/g;WHBPU和SWHBPU具有大量支化结构;与WHBPU相比,SWHBPU具有更高的起始分解温度和更低的Tg。 相似文献
9.
采用超支化聚氨酯(HBPU)作为增韧剂,制备环氧树脂的复合材料,并测试其力学性能和热学性能,并对复合材料的断面进行微观形貌表征。结果表明:在HBPU的含量在10%(质量分数)时,冲击强度达到最大值(强度为32.02kJ·m-2)材料的冲击强度提高将近200%,弯曲性能也有所提高同样的变化趋势。复合材料的力学性能随着代数的增大而增大。复合材料的断面呈应力发白现象,电镜图片也呈现出蜂窝状,进一步验证了超支化聚氨酯的空穴化和相分离理论韧性机理的合理性。复合材料的Tg随添加量增加而下降,随代数增加而增加。 相似文献
10.
11.
超支化聚氨酯具有粘度低、溶解能力增强、成膜性能好、良好的耐水性、热稳定性、物理机械性能等优点,所以在理论和应用上超支化聚氨酯逐渐成为皮革涂饰领域研究的热点。首先,以二乙醇胺(DEA)和丁二酸酐为原料,甲醇为溶剂,合成一种新型羧酸型亲水单体(DMCA),优化得到DMCA的最佳条件为温度0℃,n(DEA)∶n(丁二酸酐)=1∶1.2,时间为80 min,甲醇用量为300 m L/mol(DEA),在最佳条件下DMCA的转化率为86.18%。采用红外(FT-IR)、核磁(1H NMR)、X射线衍射(XRD)、热重(TG)、元素分析等手段对DMCA进行结构和性能的表征。其次,以DEA、丙烯酸甲酯(MA)、三羟甲基丙烷(TMP)为主要原料,甲醇为溶剂,采用有核"一步法"制备端羟基超支化聚合物(HPAE)。最后,以一代端羟基超支化聚合物为代表,将其与聚四氢呋喃(PTMG,Mn=1 000)、异佛尔酮二异氰酸酯(IPDI)、1,4-丁二醇为主要原料,使用羧酸型单体二羟甲基丙酸(DMPA)、二羟甲基丁酸(DMBA)、自制羧酸型单体(DMCA)为亲水扩链剂分别合成3种超支化水性聚氨酯皮革涂饰剂。通过红外光谱(FT-IR)、扫描电镜(SEM)、原子力显微镜(AFM)、乳液粒径、热重(TG)、示差热分析(DSC)等现代仪器对3种涂饰剂结构和性质进行表征,并对3种薄膜的物理机械性能、薄膜接触角、耐热耐水耐溶剂性能进行对比研究。 相似文献
12.
以端羟丙基硅油(数均分子量2 000)、三羟甲基丙烷(TMP)、N-甲基二乙醇胺(N-MDEA)和甲苯二异氰酸酯(TDI)等为原料合成水性聚氨酯(WPU)。为了引入疏水支链结构,采用硬脂酸对端羟基超支化聚酯进行端基改性,得到硬脂酸封端的超支化聚酯。将WPU与硬脂酸改性超支化聚酯(SA-HBPE-3)进行复配,并应用于织物。采用红外光谱对改性前后的WPU及SA-HBPE-3的结构进行表征。通过静态水接触角、吸水率及应用测试,研究了SA-HBPE-3含量对SA-HBPE-3/WPU胶膜耐水性、表面能及拒水性能的影响规律。结果表明:随着SAHBPE-3含量从0增至30wt%,SA-HBPE-3/WPU胶膜的吸水率降至6.63%,涂覆处理织物的静态水接触角升至135.3°。SA-HBPE-3的引入提高了SA-HBPE-3/WPU胶膜的耐水性和涂覆织物的拒水性。当SA-HBPE-3含量为20wt%时,拒水效果达到最优值90分。 相似文献
13.
田星李杰罗运军 《高分子材料科学与工程》2013,(4):25-28
用硬脂酸对超支化水性聚氨酯(WHBPU)进行封端,得到了硬脂酸封端的超支化水性聚氨酯(SWHBPU)。研究了硬脂酸用量对封端效率的影响,利用红外光谱、核磁共振碳谱以及官能度分析,对WHBPU和SWHBPU的结构进行了表征,并对其热性能进行了测试。结果表明,硬脂酸过量40%时,产物羟值降低至30.09 mg KOH/g;WHBPU和SWHBPU具有大量支化结构;与WHBPU相比,SWHBPU具有更高的起始分解温度和更低的Tg。 相似文献
14.
利用马来酸酐和丁基缩水甘油醚对超支化聚合物端基改性,得到以羧基和羟基为末端的超支化聚合物,其中和成盐后即得水性超支化聚合物(WHPs),通过红外光谱(FT-IR)和核磁共振(1H-NMR)对初始聚合物和改性聚合物的结构进行了表征。然后将WHPs应用于水性环氧涂料中,以差示扫描量热法对体系的固化行为进行了分析,研究了其固化动力学,并且研究了不同含量WHPs对体系固化涂层力学性能的影响。结果表明,该固化体系的表观活化能较低,固化反应容易进行,该WHPs的加入促进了体系固化反应,能够较好地改善涂膜的力学性能。当WHPs的加入量为10%时,涂层的综合力学性能达到最佳。 相似文献
15.
以异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)和二乙醇胺(DEOA)为原料通过偶合单体反应法制备出了不同代数的脂肪族超支化水性聚氨酯(HWPU)。通过红外光谱(FT-IR)和核磁共振波谱(NMR)对其结构进行了表征,采用热重分析仪(TG)和示差扫描量热仪(DSC)分别对各代HWPU的热性能进行测试分析对比。TG结果表明不同代数的HWPU均在180~275℃和275~450℃范围内有较大热失重;DSC测试第2代至第5代的HWPU的玻璃化温度(Tg)分别为:104.3℃,123.0℃,136.6℃,141.9℃,表明随着产物代数的增加Tg逐渐升高,但温度增加幅度逐渐缓慢。 相似文献
16.
17.
以异佛尔酮二异氰酸酯(IPDI)和聚乙二醇2000(PEG2000)为单体,通过逐步聚合反应合成了-NCO封端的聚氨酯顸聚体(PPU);再通过接枝使PPU与端羟基超支化聚合物(HPAE)共聚得到一种新型超支化聚氨酯(HBPU).利用红外光谱仪(FT-IR)、核磁共振(1H-NMR)、热重分析仪(TGA)、X射线衍射(X... 相似文献
18.
以二乙醇胺(DEA)和丁二酸酐为原料,甲醇为溶剂,合成一种新型羧酸型亲水单体N,N-二羟乙基-2-氨基丙酸(DMCA),优化得到DMCA的最佳条件为:冰水浴0℃,n(DEA)∶n(丁二酸酐)为1∶1.2,时间为80 min,甲醇用量为300 m L/mol(DEA),在最佳条件下DMCA的转化率为86.18%。采用红外(FTIR)、核磁(1H NMR)、X射线衍射(XRD)、热重(TG)、元素分析等手段对DMCA进行结构和性能的表征。以DMCA作为亲水扩链剂制备超支化水性聚氨酯DMCA-HWPU,其性能检测结果表明,DMCA-HWPU为非结晶性体系,其乳液呈乳白色泛蓝光,无沉淀,乳液稳定性高,并且具有很好的热稳定性。 相似文献
19.
以甲苯-2,4-二异氰酸酯(TDI)、聚碳酸酯二醇(PCDL)、二羟甲基丙酸(DMPA)和聚醚胺(ATA)为原料,采用A2+B3法合成了具有高度支化结构的水性聚氨酯(HBAPU)乳液。用红外光谱(FT-IR)对产物结构进行表征;用光子相关光谱(PCS)研究了乳液的稳定性能,NCO/OH=1.3,w(DMPA)=6%时可以得到稳定的HBAPU乳液;采用旋转黏度计、差式扫描量热仪(DSC)、热失重分析仪(TG)、电子拉力机对产物的流变行为和各种性能进行了测试。结果表明,相对于线性水性聚氨酯(LAPU),HBAPU产物具有较低的黏度、良好的热稳定性、较高的Tg和拉伸强度。 相似文献
20.
高度支化水性聚氨酯的合成及性能 总被引:2,自引:0,他引:2
以甲苯-2,4-二异氰酸酯(TDI)、聚碳酸酯二醇(PCDL)、二羟甲基丙酸(DMPA)和聚醚胺(ATA)为原料,采用A2+B3法合成了具有高度支化结构的水性聚氨酯(HBAPU)乳液。用红外光谱(FT-IR)对产物结构进行表征;用光子相关光谱(PCS)研究了乳液的稳定性能,NCO/OH=1.3,w(DMPA)=6%时可以得到稳定的HBAPU乳液;采用旋转黏度计、差式扫描量热仪(DSC)、热失重分析仪(TG)、电子拉力机对产物的流变行为和各种性能进行了测试。结果表明,相对于线性水性聚氨酯(LAPU),HBAPU产物具有较低的黏度、良好的热稳定性、较高的Tg和拉伸强度。 相似文献