首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential for improving occupants’ thermal comfort with personalized ventilation (PV) system combined with under-floor air distribution (UFAD) system was explored through human response study. The hypothesis was that cold draught at feet can be reduced when relatively warm air is supplied by UFAD system and uncomfortable sensation as “warm head” can be reduced by the PV system providing cool and fresh outdoor air at the facial level. A study with 30 human subjects was conducted in a Field Environmental Chamber. The chamber was served by two dedicated systems – a primary air handling unit (AHU) for 100% outdoor air that is supplied through the PV air terminal devices and a secondary AHU for 100% recirculated air that is supplied through UFAD outlets. Responses of the subjects to the PV-UFAD system were collected at various room air and PV air temperature combinations. The analyses of the results obtained reveal improved acceptability of perceived air quality and improved thermal sensation with PV-UFAD in comparison with the reference case of UFAD alone or mixing ventilation with ceiling supply diffuser. The local thermal sensation at the feet was also improved when warmer UFAD supply air temperature was adopted in the PV-UFAD system.  相似文献   

2.
This paper presents a thermal comfort study using a thermal manikin in a field environment chamber served by the Displacement Ventilation (DV) system. The manikin has a female body with 26 individually heated and controlled body segments. The manikin together with subjects was exposed to 3 levels of vertical air temperature gradients, nominally 1, 3 & 5 K/m, between 0.1 and 1.1 m heights at 3 room air temperatures of 20, 23 and 26 °C at 0.6 m height. Relative humidity at 0.6 m height and air velocity near the manikin and the subjects were maintained at 50% and less than 0.2 m/s, respectively. The aims of this study are to assess thermally non-uniform environment served by DV system using the manikin and correlate the subjective responses with measurements from the manikin. The main findings indicate that room air temperature had greater influence on overall and local thermal sensations and comfort than temperature gradient. Local thermal discomfort decreased with increase of room air temperature at overall thermally neutral state. The local discomfort was affected by overall thermal sensation and was lower at overall thermally neutral state than at overall cold and cool sensations.  相似文献   

3.
N. Ba lu&#x; 《Thin》1994,20(1-4):203-217

• -the mutual influence of the deformations corresponding to these two instability modes;

• -the superposition of second-order compressive stresses arising from bending and from the nonuniform torsion.

Extending the Ayrton-Perry concept to the case of spatial buckling, the effect of coupling can be allowed for by simply modifying the imperfection coefficient .  相似文献   


4.
The importance of the intake positioning height above the floor level on the performance of “ductless” personalized ventilation (“ductless” PV) in conjunction with displacement ventilation (DV) was examined with regard to the quality of inhaled air and of the thermal comfort provided. A typical office room with two workstations positioned one behind the other was arranged in a full-scale room. Each workstation consisted of a table with an installed “ductless” PV system, PC, desk lamp and seated breathing thermal manikin. The “ductless” PV system sucked the clean and cool displacement air supplied over the floor at four different heights, i.e. 2, 5, 10 and 20 cm and transported it direct to the breathing level. Moreover, two displacement airflow rates were used with a supply temperature adjusted in order to maintain an exhaust air temperature of 26 °C. Two pollution sources, namely air exhaled by one of the manikins and passive pollution on the table in front of the same manikin were simulated by constant dosing of tracer gases. The results show that the positioning of a “ductless” PV intake height up to 0.2 m above the floor will not significantly influence the quality of inhaled air and thermal comfort.  相似文献   

5.
Y. Cheng  Z. Lin 《Indoor air》2016,26(2):274-285
Room occupants' comfort and health are affected by the airflow. Nevertheless, they themselves also play an important role in indoor air distribution. This study investigated the interaction between the human body and room airflow under stratum ventilation. Simplified thermal manikin was employed to effectively resemble the human body as a flow obstacle and/or free convective heat source. Unheated and heated manikins were designed to fully evaluate the impact of the manikin at various airflow rates. Additionally, subjective human tests were conducted to evaluate thermal comfort for the occupants in two rows. The findings show that the manikin formed a local blockage effect, but the supply airflow could flow over it. With the body heat from the manikin, the air jet penetrated farther compared with that for the unheated manikin. The temperature downstream of the manikin was also higher because of the convective effect. Elevating the supply airflow rate from 7 to 15 air changes per hour varied the downstream airflow pattern dramatically, from an uprising flow induced by body heat to a jet‐dominated flow. Subjective assessments indicated that stratum ventilation provided thermal comfort for the occupants in both rows. Therefore, stratum ventilation could be applied in rooms with occupants in multiple rows.  相似文献   

6.
Human response to air movement supplied locally towards the face was studied in a room with an air temperature of 20 °C and a relative humidity of 30%. Thirty-two human subjects were exposed to three conditions: calm environment and facially supplied airflow at 21 °C and at 26 °C. The air was supplied with a constant velocity of 0.4 m/s by means of personalized ventilation towards the face of the subjects. The airflow at 21 °C decreased the subjects' thermal sensation and increased draught discomfort, but improved slightly the perceived air quality. Heating of the supplied air by 6 K (temperature increase by 4 K at the target area) above the room air temperature decreased the draught discomfort, improved subjects' thermal comfort and only slightly decreased the perceived air quality. Elevated velocity and temperature of the localized airflow caused an increase of nose dryness intensity and number of eye irritation reports. Results suggest that increasing the temperature of the air locally supplied to the breathing zone by only a few degrees above the room air temperature will improve occupants' thermal comfort and will diminish draught discomfort. This strategy will extend the applicability of personalized ventilation aiming to supply clean air for breathing at the lower end of the temperature range recommended in the standards. Providing individual control is essential in order to avoid discomfort for the most sensitive occupants.  相似文献   

7.
《Energy and Buildings》2002,34(8):829-836
Personalized ventilation (PV) aims to provide clean air to the breathing zone of occupants. Its performance depends to a large extent on the supply air terminal device (ATD). Five different ATDs were developed, tested and compared. A typical office workplace consisting of a desk with mounted ATDs was simulated in a climate chamber. A breathing thermal manikin was used to simulate a human being. Experiments at room air temperatures of 26 and 20 °C and personalized air temperatures of 20 °C supplied from the ATDs were performed. The flow rate of personalized air was changed from less than 5 up to 23 l/s. Tracer gas was used to identify the amount of personalized air inhaled by the manikin as well as the amount of exhaled air re-inhaled. The heat loss from the body segments of the thermal manikin was measured and used to calculate the equivalent temperature for the whole body as well as segments of the body. An index, personal exposure effectiveness, was used to assess the performance of ATDs in regard to quality of the air inhaled by the manikin. The personal exposure effectiveness increased with the increase of the airflow rate from the ATD to a constant maximum value. A further increase of the airflow rate had no impact on the personal exposure effectiveness. Under both isothermal and non-isothermal conditions the highest personal exposure effectiveness of 0.6 was achieved by a vertical desk grill followed by an ATD designed as a movable panel. The ATDs tested performed differently in regard to the inhaled air temperature used as another air quality indicator, as well as in regard to the equivalent temperature. The results suggest that PV may decrease significantly the number of occupants dissatisfied with the air quality. However, an ATD that will ensure more efficient distribution and less mixing of the personalized air with the polluted room air needs to be developed.  相似文献   

8.
With increasing demand for acceptable environment in the modern workplace is it necessary, already in the construction phase, to estimate what effect different environmental factors have on the occupants. Thermal sensation is affected by many factors in the work place environment, especially thermal factors and effects from air movement caused by different ventilation principles. A series of full scale measurements as well as numerical calculations have been carried out in order to investigate whether Computational Fluid Dynamics (CFD) calculations and measurements with a thermal manikin are able to predict the perceived thermal climate. When human thermal sensation is linked together in measurements and calculations, the thermal situation in the work place environment is visualized. The results show relatively good agreement with the measurements made in the real environment. However, numerical and experimental methods need to be further developed. Evaluation methods of this type, will enable engineers to make better predictions and early decisions in the design and construction process. This also opens possibilities to use results from a number of full scale tests providing means to improve the comfort, health and productivity in working life.  相似文献   

9.
Lszl Hegedüs 《Thin》1994,20(1-4):61-71
The paper deals with some special questions of experimental research being important when frames are tested and the load carrying capacity of the structure is lost because of any instability phenomena. Computer simulation results are presented:

• -to illustrat the difference between the real and ‘virtual’ structural behaviour, which is dependent on the character of loading, and

• -to show that in certain conditions a structure, which became unstable because of the instability of one of its elements, is able to turn to a stable state and to carry increasing loads before complete loss of its load carrying capacity.

This paper is a modified (slightly extended) version of that which was presented during the ‘First International Conference on Coupled Instabilities in Metal Structures’. Reflections of participants initiated some modification.  相似文献   


10.
In this paper we develop a detailed computational fluid dynamics (CFD) model of a personal ventilation (PV) setup comprising a PV nozzle, seated thermal manikin and floor diffuser, then use experimental velocity and tracer gas concentration data for the same setup to validate the CFD model. Specifically, we compare CFD results with the experimental results obtained with both a conventional round nozzle and a novel low-mixing co-flow nozzle directing a PV fresh air jet toward the breathing zone (BZ) of a seated thermal manikin in a thermally controlled chamber ventilated also by a floor diffuser behind the manikin. The CFD model shows excellent agreement with the experimental data. We then exercise the CFD model to study the effect of nozzle exit boundary conditions such as turbulence intensity and length scale, flow rate and temperature, and manikin temperature on the air quality in the BZ of the heated manikin. It is shown that the air quality of the novel PV system is sensitive to the nozzle exit turbulence intensity and flow rate, and insensitive to jet temperature within the 20–26 °C range, and to body temperature within a clo range of 0–1. A companion paper presents in detail the experimental set up and results used to validate the CFD model discussed in this paper.  相似文献   

11.
This paper presents a study of local thermal sensation (LTS) and comfort in a field environmental chamber (FEC) served by displacement ventilation (DV) system. The FEC, 11.12 m (L)×7.53 m (W)×2.60 m (H), simulates a typical office layout. A total of 60 tropically acclimatized subjects, 30 male and 30 female, were engaged in sedentary office work for 3 h. Subjects were exposed to three vertical air temperature gradients, nominally 1, 3 and 5 K/m, between 0.1 and 1.1 m heights and three room air temperatures of 20, 23 and 26 °C at 0.6 m height. The objective of this study is to investigate the mutual effect of local and overall thermal sensation (OTS) and comfort in DV environment. The results show that in a space served by DV system, at OTS close to neutral, local thermal discomfort decreased with the increase of room air temperature. The OTS of occupants was mainly affected by LTS at the arm, calf, foot, back and hand. Local thermal discomfort was affected by both LTS and OTS. At overall cold thermal sensation, all body segments prefer slightly warm sensation. At overall slightly warm thermal sensation, all body segments prefer slightly cool sensation.  相似文献   

12.
This paper examines people’s thermal sensations during step-changes between ambient and workstation environments with a local ventilation device installed to supply-air motion around heads. We conducted human subject tests in a controlled environment chamber for summer and winter conditions. We performed 29 tests. The ambient air temperatures were 28 and 30 °C for summer conditions and 19 °C for winter conditions. The local supply-air temperatures were at 24, 28 and 30 °C for summer and 50 °C for winter. The supply-air velocities of the local ventilation device were at 3, 3.5, and 5 m/s for summer and 3.5 m/s for winter. The air temperatures near heads were 26–30 °C for summer and 32 °C for winter. The velocities along the jet-flow line at a distance of 10 cm from heads were 1.4–2.6 m/s for summer and 1.8 m/s for winter. In total, 23 subjects participated in the tests, and each subject participated in 1∼2 test conditions. Both the dynamic and stable thermal sensations of head and whole body were analyzed. When head is cooled by local ventilation, head thermal sensation has an effect on overall thermal sensation. When subjects moved from the workstation, where local devices were installed, to the ambient environment that was warmer in summer and colder in winter than the workstation, both overshooting and hysteresis were found. These thermal sensation changing trends in non-uniform step-change environments are helpful in personalizing environment control designs and exploring the possibilities of saving energy in buildings.  相似文献   

13.
The effect of personalized ventilation (PV) on people's health, comfort, and performance in a warm and humid environment (26 and 28°C at 70% relative humidity) was studied and compared with their responses in a comfortable environment (23°C and 40% relative humidity). Thirty subjects participated in five 4‐h experiments in a climate chamber. Under the conditions with PV, the subjects were able to control the rate and direction of the supplied personalized flow of clean air. Subjective responses were collected through questionnaires. During all exposures, the subjects were occupied with tasks used to assess their performance. Objective measures of tear film stability, concentration of stress biomarkers in saliva, and eye blinking rate were taken. Using PV significantly improved the perceived air quality (PAQ) and thermal sensation and decreased the intensity of Sick Building Syndrome (SBS) symptoms to those prevailing in a comfortable room environment without PV. Self‐estimated and objectively measured performance was improved. Increasing the temperature and relative humidity, but not the use of PV, significantly decreased tear film quality and the concentration of salivary alpha‐amylase, indicating lower mental arousal and alertness. The use of PV improved tear film stability as compared to that in a warm environment without PV.  相似文献   

14.
The effects of the human convective boundary layer (CBL), room airflow patterns, and their velocities on personal exposure are examined. Two pollutants are studied which simulate particles released from the feet and generated at distances of 2 and 3 m by a human cough. A thermal manikin whose body shape, size, and surface temperatures correspond to those of an average person is used to simulate the CBL. The findings of the study reveal that for accurate predictions of personal exposure, the CBL needs to be considered, as it can transport the pollution around the human body. The best way to control and reduce personal exposure when the pollution originates at the feet is to employ transverse flow from in front and from the side, relative to the exposed occupant. The flow from the above opposing the CBL create the most unfavorable velocity field that can increase personal exposure by 85%, which demonstrates a nonlinear dependence between the supplied flow rate and personal exposure. In the current ventilation design, it is commonly accepted that an increased amount of air supplied to the rooms reduces the exposure. The results of this study suggest that the understanding of air patterns should be prioritized.  相似文献   

15.
The performance of the novel “ductless” personalized ventilation in conjunction with displacement ventilation (DV) was compared with the performance of DV alone under realistic conditions involving disturbances due to walking of one or two persons. An office room with two workstations was arranged in a full-scale test room. Two thermal manikins were used as sedentary occupants at the workstations. Two pollution sources, namely exhaled air by one of the manikins and passive pollution on the table in front of the same manikin were simulated. The performance of the ventilation systems was evaluated with regard to the quality of inhaled air and thermal comfort of the seated “occupants”. The walking person(s) caused mixing of the clean and cool air near the floor with the polluted and warmer air at higher levels and disturbed the displacement principle which resulted in a decrease of the inhaled air quality. The performance of the “ductless” PV under the tested conditions was better as opposed to DV alone. Thus in practice the “ductless” PV will be superior to DV alone as regards perceived quality of inhaled air. The location of a walking person was found to be important. Person(s) walking close to the displacement diffuser will cause greater disturbance.  相似文献   

16.
The human body is surrounded by a microclimate, which results from its convective release of heat. In this study, the air temperature and flow velocity of this microclimate were measured in a climate chamber at various room temperatures, using a thermal manikin simulating the heat release of the human being. Different techniques (Particle Streak Tracking, thermography, anemometry, and thermistors) were used for measurement and visualization. The manikin surface temperature was adjusted to the particular indoor climate based on simulations with a thermoregulation model (UCBerkeley Thermal Comfort Model). We found that generally, the microclimate is thinner at the lower part of the torso, but expands going up. At the head, there is a relatively thick thermal layer, which results in an ascending plume above the head. However, the microclimate shape strongly depends not only on the body segment, but also on boundary conditions: The higher the temperature difference between the surface temperature of the manikin and the air temperature, the faster the airflow in the microclimate. Finally, convective heat transfer coefficients strongly increase with falling room temperature, while radiative heat transfer coefficients decrease. The type of body segment strongly influences the convective heat transfer coefficient, while only minimally influencing the radiative heat transfer coefficient.  相似文献   

17.
This study aimed at investigating the thermal comfort for the whole body as well as for certain local areas, skin temperatures, and sensible heat losses in various asymmetric radiant fields. Human subject experiments were conducted to assess the overall comfort sensation and local discomfort, and local skin temperatures were measured. Through thermal manikin experiments, we discovered a new method for the precise measurement of the local sensible heat loss in nonuniform thermal environments. The local sensible heat losses were measured by the use of a thermal manikin that had the same local skin temperatures as the human subjects. The experimental conditions consisted of the anterior–posterior, right–left, and up–down asymmetric thermal environments created by radiation panels. A total of 35 thermal environmental conditions were created ranging from 25.5 to 30.5 °C for air temperature, from 11.5 to 44.5 °C for surface temperature of radiation panels, from 40% RH to 50% RH for humidity, and less than 0.05 m/s for inlet air velocity to the climatic chamber. The local skin temperature changed depending on the environmental thermal nonuniformity, even if the mean skin temperature remained almost the same. It is essential to use the skin temperature distribution as well as mean skin temperature for expressing thermal comfort in nonuniform environments. The local sensible heat loss changed depending on the environmental thermal nonuniformity, even if the mean sensible heat loss remained almost the same. The relationship between the local skin temperature and local sensible heat loss cannot be depicted by a simple line; instead, it varies depending on the environmental thermal nonuniformity. The local heat discomfort in the head area was dependent on both the local skin temperature and local sensible heat loss. However, the local cold discomfort in the foot area was related only to the local skin temperature.  相似文献   

18.
The effect of vertical air temperature gradient on overall and local thermal comfort at different overall thermal sensations and room air temperatures (at 0.6 m height) was investigated in a room served by displacement ventilation system. Sixty tropically acclimatized subjects performed sedentary office work for a period of 3 h during each session of the experiment. Nominal vertical air temperature gradients between 0.1 and 1.1 m heights were 1, 3 and 5 K/m while nominal room air temperatures at 0.6 m height were 20, 23 and 26 °C. Air velocity in the space near the subjects was kept at below 0.2 m/s. Relative humidity at 0.6 m height was maintained at 50%. It was found that temperature gradient had different influences on thermal comfort at different overall thermal sensations. At overall thermal sensation close to neutral, only when room air temperature was substantially low, such as 20 °C, percentage dissatisfied of overall body increased with the increase of temperature gradient. At overall cold and slightly warm sensations, percentage dissatisfied of overall body was non-significantly affected by temperature gradient. Overall thermal sensation had significant impact on overall thermal comfort. Local thermal comfort of body segment was affected by both overall and local thermal sensations.  相似文献   

19.
The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip at a distance of <0.01 m from the face. Body surface temperature, shape and posture as well as clothing insulation have impact on the measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method for predicting air acceptability based on inhaled air parameters and known exposure-response relationships established in experiments with human subjects is suggested. PRACTICAL IMPLICATIONS: Recommendations for optimal simulation of human breathing by means of a breathing thermal manikin when studying pollution concentration, temperature and humidity of the inhaled air as well as the transport of exhaled air (which may carry infectious agents) between occupants are outlined. In order to compare results obtained with breathing thermal manikins, their nose and mouth geometry should be standardized.  相似文献   

20.
The performance of a coupled system of the Desktop Personalized Ventilation Air Terminal Device (DPV ATD) and desk mounted fans (DMF) was examined in a field environmental chamber. Cooling effect was evaluated using manikin-based equivalent temperature (Teq,), of each of the 26 body segments of a breathing thermal manikin (BTM) and personal exposure effectiveness (PEE) was used as an indicator for effectiveness of ventilation. Computational fluid dynamics (CFD) was used to examine the velocity field generated around BTM to provide better understanding of the relationship between air patterns generated and convective cooling effect on each of the body segments produced by DPV ATD coupled with DMF. Four different positions of DPV ATD were examined: two positions each in front and on the side of the BTM. Measurements were conducted at ambient temperature of 26 °C and PV air temperature of 23 °C at a flow rate of 10 L/s. The results indicate that coupling of DPV ATD and DMF distributes cooling more uniformly across BTM surfaces and therefore has the potential to reduce risk of draft discomfort as compared to usage of DPV ATD alone. Personalized exposure effectiveness was increased in 3 of the positions examined when the coupled system was used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号