共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of finite‐time tracking control is studied for uncertain nonlinear mechanical systems. To achieve finite‐time convergence of tracking errors, a simple linear sliding surface based on polynomial reference trajectory is proposed to enable the trajectory tracking errors to converge to zero in a finite time, which is assigned arbitrarily in advance. The sliding mode control technique is employed in the development of the finite‐time controller to guarantee the excellent robustness of the closed‐loop system. The proposed sliding mode scheme eliminates the reaching phase problem, so that the closed‐loop system always holds the invariance property to parametric uncertainties and external disturbances. Lyapunov stability analysis is performed to show the global finite‐time convergence of the tracking errors. A numerical example of a rigid spacecraft attitude tracking problem demonstrates the effectiveness of the proposed controller. 相似文献
2.
3.
4.
5.
This paper investigates the continuous finite‐time control problem of high‐order uncertain nonlinear systems with mismatched disturbances through the terminal sliding mode control method. By constructing a novel dynamic terminal sliding manifold based on the disturbance estimations of high‐order sliding mode observers, a continuous finite‐time terminal sliding mode control method is developed to counteract mismatched disturbances. To avoid discontinuous control action, the switching terms of a dynamic terminal sliding manifold are designed to appear only in the derivative term of the control variable. To validate its effectiveness, the proposed control method is applied to a DC‐DC buck converter system. The experimental results show the proposed method exhibits better control performance than a chattering free controller, such as mismatched disturbances rejection and smaller steady‐state fluctuations. 相似文献
6.
对于一类n阶非线性系统,提出一种自适应反演准滑模控制方法,控制的前n-1步采用自适应反演算法消除非匹配不确定性的影响,在最后一步,为改进跟踪效果,结合了可变边界层的思想,设计了准滑模控制方法,达到系统的n个状态快速收敛的目的.最终系统中不满足匹配条件的部分也具有较好的鲁棒性.与自适应反演线性滑模方法相比具有更好的跟踪性,理论分析证明了控制系统在削弱抖振的同时也能保证稳态精度,仿真实验证明了该方法的可行性. 相似文献
7.
针对带扰动不确定分数阶混沌系统的同步问题,基于自适应Terminal滑模控制,设计了一种分数阶非奇异Terminal滑模面,保证误差系统沿着滑模面在有限时间内稳定至平衡点,在系统外部扰动和不确定性的边界事先未知的情况,设计了自适应控制率,在线估计未知边界,使得同步误差轨迹能到达滑模面。最后,以三维分数阶Chen系统和四维分数阶Lorenz超混沌系统为例,利用所设计的自适应Terminal滑模控制器进行同步仿真,验证了所给方法是有效性和可行性。 相似文献
8.
一类不确定系统的自适应非奇异Terminal滑模控制 总被引:1,自引:0,他引:1
提出针对一类不确定系统的自适应非奇异Terminal滑模控制。确定含非线性项的滑模面,通过构造李亚普洛夫函数的方式确定控制器结构,设计自适应增益控制律实时估计不确定参数,并考虑外扰动的影响,证明控制系统的稳定性和鲁棒性。仿真结果验证自适应非奇异Terminal滑模控制器能够使不确定系统状态变量快速收敛。 相似文献
9.
Ming‐Chang Pai 《Asian journal of control》2019,21(5):2290-2300
A new discrete‐time adaptive global sliding mode control (SMC) scheme combined with a state observer is proposed for the robust stabilization of uncertain nonlinear systems with mismatched time delays and input nonlinearity. A state observer is developed to estimate the unmeasured system states. By using Lyapunov stability theorem and linear matrix inequality (LMI), the condition for the existence of quasi‐sliding mode is derived and the stability of the overall closed‐loop system is guaranteed. Finally, simulation results are presented to demonstrate the validity of the proposed scheme. 相似文献
10.
为实现非线性系统输出对期望轨迹的有限时间内精确跟踪,提出一种有限时间鲁棒控制算法。通过设计一种无到达过程的时变终端滑模面,在保证有限时间收敛的基础上,消除了传统滑模控制中固有的稳态误差,实现系统输出对期望轨迹的精确跟踪。设计了自适应更新律补偿由参数摄动导致的系统扰动,增强系统对内部未知参数摄动的鲁棒性。对比仿真结果表明:时变终端滑模控制比线性滑模控制的轨迹跟踪时间快41. 5%;线性滑模控制器下的轨迹跟踪稳态误差为0. 005,时变滑模控制器使轨迹跟踪的稳态误差降为0,实现精确跟踪。 相似文献
11.
12.
Ledi Zhang Shousheng Xie Yu Zhang Litong Ren Bin Zhou Hao Wang Jingbo Peng Lei Wang Yingjie Li 《Asian journal of control》2020,22(2):788-802
With a focus on aero‐engine distributed control systems (DCSs) with Markov time delay, unknown input disturbance, and sensor and actuator simultaneous faults, a combined fault tolerant algorithm based on the adaptive sliding mode observer is studied. First, an uncertain augmented model of distributed control system is established under the condition of simultaneous sensor and actuator faults, which also considers the influence of the output disturbances. Second, an augmented adaptive sliding mode observer is designed and the linear matrix inequality (LMI) form stability condition of the combined closed‐loop system is deduced. Third, a robust sliding mode fault tolerant controller is designed based on fault estimation of the sliding mode observer, where the theory of predictive control is adopted to suppress the influence of random time delay on system stability. Simulation results indicate that the proposed sliding mode fault tolerant controller can be very effective despite the existence of faults and output disturbances, and is suitable for the simultaneous sensor and actuator faults condition. 相似文献
13.
Decentralized Sliding Mode Control for Multi‐Input Complex Interconnected Systems Subject to non‐smooth Nonlinearities 下载免费PDF全文
Wen‐Jeng Liu 《Asian journal of control》2018,20(3):1171-1181
Many modern control systems become gradually more complicated and, consequently, the approach to control design approaches is both difficulty and complex. Moreover, if such a complex interconnected system is subjected to non‐smooth nonlinearities in the actuator, then unexpected difficulties, degradation or, even worse, instability will arise in the system performance. Therefore, a new decentralized sliding mode control (DSMC) approach for such a class of complex interconnected systems subjected to non‐smooth (deadzone) nonlinearities is proposed in this paper. Based on sliding mode control (SMC) theory, the proposed DSMC laws guarantee the global reaching condition of the sliding mode in uncertain complex interconnected systems with deadzone nonlinearities, that is, they can ensure that the sliding mode is reached in finite time and with prescribed transient behavior. In the sliding mode, the investigated uncertain complex interconnected system with deadzone nonlinearities in the actuator still are insensitive to system uncertainties and external disturbances. The proposed DSMC laws can work effectively for uncertain complex interconnected systems either with or without deadzone nonlinearities in the actuator. However, this cannot be guaranteed by the traditional DSMC design for systems without input deadzone nonlinearities. Furthermore, the sliding motion can be controlled to converge within a specified exponential speed. Finally, two illustrative examples with a series of computer simulations are presented to demonstrate the effectiveness of the proposed DSMC laws. 相似文献
14.
不确定非线性系统的自适应最终滑模控制──Backstepping方法(英) 总被引:1,自引:0,他引:1
对具有参数不确定与未知非线性的一类非线性系统,本文通过引入快慢两种切换线给出了一种自适应有限时间滑模控制机制.Backstepping方法被应用到设计中.此种控制机制保证了闭环系统的稳定性并使状态在有限时间内收敛到原点.仿真结果表明该控制机制的有效性. 相似文献
15.
Jian‐ning Li Hongye Su Yibo Zhang Zheng‐guang Wu Jian Chu 《Asian journal of control》2013,15(1):260-269
The problem of chattering free sliding mode control for a class of uncertain discrete singular systems with state delay is investigated in this paper. As a component of the solution, a new least squares support vector machine (LS‐SVM) reaching law is proposed. In terms of linear matrix inequalities, a delay‐dependent condition for sliding mode dynamics to be regular, causal, and asymptotically stable is established, and the chattering problem that appears in traditional variable structure systems is eliminated. Numerical examples are provided to demonstrate the applicability of the proposed methods. 相似文献
16.
On Finite‐Time Stabilization of Active Disturbance Rejection Control for Uncertain Nonlinear Systems 下载免费PDF全文
This paper designs the active disturbance rejection control (ADRC) to achieve finite‐time stabilization for a class of uncertain nonlinear systems. The proposed control incorporates both an extended state observer (ESO) as well as an adaptive sliding mode controller. The ESO is utilized to estimate the full system states and the total uncertainties, and the adaptive strategy is incorporated to deal with the estimation errors. It is proved that, with the application of the proposed control law, semi‐global finite‐time stabilization can be achieved. Effectiveness of the proposed method is illustrated with a numerical example. 相似文献
17.
讨论了不确定时滞系统的鲁棒控制器设计问题。利用自适应滑模控制策略,直接克服系统不确定性的影响,保证了从任意初始位置出发的系统在有限时间内到滑模面;基于时滞系统鲁棒稳定控制的结论,导出了时滞依赖滑模控制的新结论。仿真实验证明了所提方法的有效性。 相似文献
18.
基于FNN的滑模自适应控制 总被引:2,自引:0,他引:2
研究一类不确定性非线性系统的直接自适应控制方法。该方法由滑模控制器和模糊神经网络构成,通过平滑切换实现自适应控制策略。仿真结果表明,这种方法既有强鲁棒性,又能有效地消除高频颤动。 相似文献
19.