首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a novel decentralized adaptive neural control scheme is proposed for a class of interconnected large‐scale uncertain nonlinear time‐delay systems with input saturation. Radial basis function (RBF) neural networks (NNs) are used to tackle unknown nonlinear functions. Then, the decentralized adaptive NN tracking controller is constructed by combining Lyapunov–Krasovskii functions and the dynamic surface control (DSC) technique, along with the minimal‐learning‐parameters (MLP) algorithm. The stability analysis subject to the effect of input saturation constraints are conducted with the help of an auxiliary design system based on the Lyapunov–Krasovskii method. The proposed controller guarantees uniform ultimate boundedness (UUB) of all of the signals in the closed‐loop large‐scale system, while the tracking errors converge to a small neighborhood around the origin. An advantage of the proposed control scheme lies in the number of adaptive parameters of the whole system being reduced to one and in the solution of the three problems of “computational explosion,” “dimension curse,” and “controller singularity”. Finally, simulation results along with comparisons are presented to demonstrate the advantages, effectiveness, and performance of the proposed scheme.  相似文献   

2.
This paper focuses on the problem of adaptive neural control for a class of uncertain nonlinear pure‐feedback systems with multiple unknown time‐varying delays. The considered problem is challenging due to the non‐affine pure‐feedback form and the unknown system functions with multiple unknown time‐varying delays. Based on a novel combination of mean value theorem, Razumikhin functional method, dynamic surface control (DSC) technique and neural network (NN) parameterization, a new adaptive neural controller which contains only one parameter is developed for such systems. Moreover, The DSC technique can overcome the problem of ‘explosion of complexity’ in the traditional backstepping design procedure. All closed‐loop signals are shown to be semi‐globally uniformly ultimately bounded, and the tracking error converges to a small neighborhood of the origin. Two simulation examples are given to verify the effectiveness of the proposed design.  相似文献   

3.
This paper investigates the problem of output feedback control for a class of stochastic nonlinear systems with time‐delays. Using dynamic gain scaling technique, an adaptive update law is introduced to the observer and controller to deal with the unknown parameters. Based on the Lyapunov‐Krasovskii functional and stochastic Barbalat's lemma, it is proved that the proposed universal‐type adaptive output feedback controller can regulate all the states of the closed‐loop system almost surely. A simulation example is presented to illustrate the effectiveness of the proposed design procedure.  相似文献   

4.
In this paper, a robust adaptive fuzzy control approach is proposed for a class of nonlinear systems in strict‐feedback form with the unknown time‐varying saturation input. To deal with the time‐varying saturation problem, a novel controller separation approach is proposed in the literature to separate the desired control signal from the practical constrained control input. Furthermore, an optimized adaptation method is applied to the dynamic surface control design to reduce the number of adaptive parameters. By utilizing the Lyapunov synthesis, the fuzzy logic system technique and the Nussbaum function technique, an adaptive fuzzy control algorithm is constructed to guarantee that all the signals in the closed‐loop control system remain semiglobally uniformly ultimately bounded, and the tracking error is driven to an adjustable neighborhood of the origin. Finally, some numerical examples are provided to validate the effectiveness of the proposed control scheme in the literature.  相似文献   

5.
This paper proposes a robust adaptive dynamic surface control (DSC) scheme for a class of time‐varying delay systems with backlash‐like hysteresis input. The main features of the proposed DSC method are that 1) by using a transformation function, the prescribed transient performance of the tracking error can be guaranteed; 2) by estimating the norm of the unknown weighted vector of the neural network, the computational burden can be greatly reduced; 3) by using the DSC method, the explosion of complexity problem is eliminated. It is proved that the proposed scheme guarantees all the closed‐loop signals being uniformly ultimately bounded. The simulation results show the validity of the proposed control scheme.  相似文献   

6.
This paper focuses on investigating the issue of adaptive state-feedback control based on neural networks(NNs)for a class of high-order stochastic uncertain systems with unknown nonlinearities. By introducing the radial basis function neural network(RBFNN) approximation method, utilizing the backstepping method and choosing an approximate Lyapunov function, we construct an adaptive state-feedback controller which assures the closed-loop system to be mean square semi-global-uniformly ultimately bounded(M-SGUUB). A simulation example is shown to illustrate the effectiveness of the design scheme.  相似文献   

7.
This paper is aimed at exploring dynamic surface control (DSC) for a class of uncertain nonlinear systems in strict‐feedback form with time delays. Combining the Finite Covering Lemma (Heine‐Borel Theorem) with neural networks, a novel method is proposed to approximate time delay terms, which leads to the abandonment of traditional Lyapunov‐Krasovskii functionals. Then, a surface error modification and an initialization technique are proposed to guarantee the tracking performance. Moreover, by applying a newly‐developed neural network based adaptive control technique, it is shown that the update law for the proposed DSC scheme is needed only at the last design step with only one parameter being estimated online, which significantly reduces the computational burden, compared with current DSC schemes. Simulation results are presented to illustrate the efficiency of the proposed scheme.  相似文献   

8.
司文杰  董训德  王聪 《自动化学报》2017,43(8):1383-1392
针对单输入单输出系统研究一种在任意切换下的跟踪控制问题,系统包含未知扰动和输入饱和特性.首先,利用高斯误差函数描述一个连续可导的非对称饱和模型.其次,利用径向基神经网络(Radial basis function neural network,RBF NN)逼近未知的系统动态.最后,基于公共的Lyapunov函数构造状态反馈控制器.设计的控制器避免过多参数调节从而减轻计算负荷.结果展示本文给出的状态反馈控制器可以保证闭环系统的所有信号是半全局一致有界的,并且跟踪误差可收敛到零值小的领域内.最后的仿真结果进一步验证提出方法的有效性.  相似文献   

9.
This paper considers the problem of the control for T‐S fuzzy systems with input time‐varying delay via dynamic output feedback. Firstly, by applying the reciprocally convex approach, new delay‐dependent sufficient condition for performance analysis is obtained. Then, a less conservative condition for the existence of the controllers is given in terms of linear matrix inequalities (LMIs). Moreover, in the considered system, the time‐delay term is included in the measured output. This results in the difficulty in designing the controllers being increased and the obtained results being applied to a wider class of fuzzy systems than the most existing ones. The main contribution of this work lies in the application of the reciprocally convex inequality and the time‐delay term included in the measured output. Finally, the advantages and effectiveness of the present results are shown by several numerical examples.  相似文献   

10.
In this paper, an adaptive fuzzy backstepping robust control approach is proposed for a class of SISO nonlinear strict‐feedback systems. The nonlinear systems addressed in this paper are assumed to possess three uncertainties: (i) the unstructured uncertainties; (ii) the time delays; and (iii) the dynamics uncertainties. In adaptive backstepping recursive design, fuzzy logic systems are used to approximate the unstructured uncertainties. A nonlinear damping technique and Lyapunov–Krasovskii functions are introduced to cancel the effects of the dynamics uncertainties and deal with the time delays, respectively. Combining the backstepping technique and a small gain approach, a stable adaptive fuzzy robust control approach is developed. It is proved that all the signals of the closed‐loop system are semi‐golablly uniformaly ultimately bounded (SUUB). The effectiveness of the proposed approach is illustrated by a simulation example.  相似文献   

11.
This paper is devoted to adaptive output tracking for a class of multi‐input multi‐output nonlinear systems with unknown non‐symmetric dead‐zone. With the aid of a matrix factorization and a similarity transformation, a robust adaptive dynamic surface control scheme is proposed and the difficulty caused by the control gain matrix and the dead‐zone is circumvented. By introducing a surface error modification and an initialization technique, we show that the performance of the tracking errors can be guaranteed. Moreover, the proposed scheme contains only one updated parameter at each design step, which significantly reduces the computational burden. It is proven that all signals of the closed‐loop system are semi‐globally uniformly bounded. Simulation results on coupled inverted double pendulums are presented to illustrate the effectiveness of the proposed scheme.  相似文献   

12.
王正志 《自动化学报》1993,19(6):678-683
本文提出一种用自组织自学习适应思想解决非线性动力系统控制问题的新方法。在每个小区域感受野,可以把非线性系统近似展开为线性,由神经元执行控制。各神经元的凝视点,感受野和功能由自组织自学习自适应方法进行调节。大量仿真结果验证了本方法的正确性和实用性。  相似文献   

13.
非线性系统的神经网络鲁棒自适应跟踪控制   总被引:1,自引:0,他引:1  
针对一类具有未知非线性函数和未知虚拟系数非线性函数的二阶非线性系统,提出了一种神经网络鲁棒自适应输出跟踪控制方法.用李雅普诺夫稳定性分析方法证明了本文的神经网络自适应控制器能够使受控系统内的所有信号均为有界.选择的神经网络权值调整规律可以防止自适应控制中的参数漂移.  相似文献   

14.
This paper studies the problem of state feedback stabilization for a class of stochastic time‐varying delay nonlinear systems which are neither necessarily feedback linearizable nor affine in the control input. Based on the backstepping design method and the adding of a power integrator technique, a state feedback controller is constructed to ensure the origin of closed‐loop system is globally asymptotically stable in probability. The main design difficulty is how to deal with the different power orders, time‐varying delay and the nonsmooth system perturbations. The efficiency of the state feedback controller is demonstrated by a simulation example.  相似文献   

15.
This paper is concerned with the problem of delay‐dependent passive analysis and control for stochastic interval systems with interval time‐varying delay. The system matrices are assumed to be uncertain within given intervals, and the time delay is a time‐varying continuous function belonging to a given range. By the transformation of the interval uncertainty into the norm‐bounded uncertainty, partitioning the delay into two segments of equal length, and constructing an appropriate Lyapunov–Krasovskii functional in each segment of the delay interval, delay‐dependent stochastic passive control criteria are proposed without ignoring any useful terms by considering the information of the lower bound and upper bound for the time delay. The main contribution of this paper is that a tighter upper bound of the stochastic differential of Lyapunov–Krasovskii functional is obtained via a newly‐proposed bounding condition. Based on the criteria obtained, a delay‐dependent passive controller is presented. The results are formulated in terms of linear matrix inequalities. Numerical examples are given to demonstrate the effectiveness of the method.  相似文献   

16.
A new discrete‐time adaptive global sliding mode control (SMC) scheme combined with a state observer is proposed for the robust stabilization of uncertain nonlinear systems with mismatched time delays and input nonlinearity. A state observer is developed to estimate the unmeasured system states. By using Lyapunov stability theorem and linear matrix inequality (LMI), the condition for the existence of quasi‐sliding mode is derived and the stability of the overall closed‐loop system is guaranteed. Finally, simulation results are presented to demonstrate the validity of the proposed scheme.  相似文献   

17.
本文考虑具有量化输入和输出约束的一类非线性互联系统的自适应分散跟踪控制设计. 分别针对量化参数已知和未知两种情况, 基于反推(Backstepping)设计法, 利用神经网络逼近特性, 设计自适应分散跟踪控制策略. 通过定义新的未知常量和非线性光滑函数, 设计自适应参数估计项来消除未知互联项对系统的影响. 进一步考虑量化参数未知的情形, 引入一个新的不等式来转化输入信号, 并构建新的自适应补偿项来处理量化影响. 同时, 障碍李雅普诺夫函数的引入, 确保了系统输出不违反约束条件. 与现有量化输入设计相比, 本文所提方法不要求未知非线性项满足李普希兹条件, 并且允许量化参数未知. 该设计方法保证了闭环系统所有信号最终一致有界, 而且跟踪误差能够收敛到原点的小邻域内, 同时保证输出不违反约束条件. 最后, 仿真算例验证了所提方法具备良好的跟踪控制性能.  相似文献   

18.
This paper concentrates on asymmetric barrier Lyapunov functions (ABLFs) based on finite-time adaptive neural network (NN) control methods for a class of nonlinear strict feedback systems with time-varying full state constraints. During the process of backstepping recursion, the approximation properties of NNs are exploited to address the problem of unknown internal dynamics. The ABLFs are constructed to make sure that the time-varying asymmetrical full state constraints are always satisfied. According to the Lyapunov stability and finite-time stability theory, it is proven that all the signals in the closed-loop systems are uniformly ultimately bounded (UUB) and the system output is driven to track the desired signal as quickly as possible near the origin. In the meantime, in the scope of finite-time, all states are guaranteed to stay in the pre-given range. Finally, a simulation example is proposed to verify the feasibility of the developed finite time control algorithm.   相似文献   

19.
针对控制时滞及带饱和的一类离散时间非线性系统的最优控制问题,通过重构性能指标函数和对应的系统变换,处理了性能指标函数中的控制耦合项;继而引入一个合适的泛函,解决了控制带饱和问题.给出了一个新的性能指标函数,利用迭代自适应动态规划(ADP)算法获得最优控制.为实现该算法,采用神经网络逼近函数来求解最优控制问题.仿真结果验证了方法的有效性.  相似文献   

20.
This paper considers the leader‐following synchronization problem of nonlinear multi‐agent systems with unmeasurable states in the presence of input saturation. Each follower is governed by a class of strict‐feedback systems with unknown nonlinearities and the information of the leader can be accessed by only a small fraction of followers. An auxiliary system is introduced and its states are used to design the cooperative controllers for counteracting the effect of input saturation. By using fuzzy logic systems to approximate the unknown nonlinearities, local adaptive fuzzy observers are designed to estimate the unmeasurable states. Dynamic surface control (DSC) is employed to design distributed adaptive fuzzy output feedback controllers. The developed controllers guarantee that the outputs of all followers synchronize to that of the leader under directed communication graphs. Based on Lyapunov stability theory, it is proved that all signals in the closed‐loop systems are semiglobally uniformly ultimately bounded (SGUUB), and the tracking error converges to a small neighborhood of the origin. An example is provided to show the effectiveness of the proposed control approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号