首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this work, a robust control scheme for variable speed wind turbine system that incorporates a doubly feed induction generator is described. The sliding mode controller is designed in order to track the optimum wind turbine speed value that produces the maximum power extraction for different wind speed values. A robust sliding mode observer for the aerodynamic torque is also proposed in order to avoid the wind speed sensors in the control scheme. The controller uses the estimated aerodynamic torque in order to calculate the reference value for the wind turbine speed. Another sliding mode control is also proposed in order to maintain the dc‐link voltage constant regardless of the direction of the rotor power flow. The stability analysis of the proposed controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. Finally, the simulation results show that the proposed control scheme provides a high‐performance turbine speed control, in order to obtain the maximum wind power generation, and a high‐performance dc‐link regulation in the presence of system uncertainties.  相似文献   

2.
This note addresses the multi‐input second‐order sliding mode control design for a class of nonlinear multivariable uncertain dynamics. Among the most important peculiarities of the considered control problem, the considered sliding vector variable has a uniform vector relative degree [2,2, … ,2] with respect to the vector control variable, and only the sign of the sliding vector and of its derivative are available for feedback. Additionally, the symmetric part of the state‐dependent control matrix is supposed to be positive definite. Under some further mild restrictions on the uncertain system's dynamics, a control algorithm that realizes a multi‐input version of the ‘twisting’ second‐order sliding mode control algorithm is suggested. Simple controller tuning conditions are derived by means of a constructive Lyapunov analysis, which demonstrates that the suggested control algorithm guarantees the semiglobal asymptotic convergence to the sliding manifold. Simulation results, which confirm the good performance of the proposed scheme and investigate the actual accuracy obtained under the discrete‐time implementation effects, are given. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
本文提出一种超螺旋二阶滑模控制方案同时实现双馈变速风力发电系统最大风能捕获和无功功率调节.通过设计两个二阶滑模控制器,实现控制目标,降低机械磨损,提高控制精度,通过调节发电机转子电压,跟踪风机最优转速和转子电流设定值,实现额定风速以下的最大风能捕获和无功功率调节.采用二次型李雅普诺夫函数确定控制参数范围、确保系统有限时间稳定性.1.5 MW风机系统仿真实验验证所提方案有效性.  相似文献   

4.
A global quasi‐sliding mode control (GQSMC) scheme is introduced to ensure zigzag motion with a smaller bound than that offered by Gao's method and to provide disturbance rejection throughout the entire response in discrete time. The design of an augmented forcing function is followed by three conditions in discrete time extended from global sliding mode control (GSMC) in continuous time. Furthermore, we adopt a switching gain, which is auto‐tuned as a function of sliding surface s(k), such that chattering phenomena can be considerably alleviated during the steady‐state, significantly reducing switching control applied to the plant. The proposed GQSMC scheme can provide more advantages such as an even distribution of the control input throughout the entire response and an improvement in the accuracy and speed of the desired performance, guaranteeing a quasi‐sliding mode throughout the entire response. In addition, we also consider the input disturbance rejection according to the norm‐bounded exogenous signal. Results from both the simulation and the experiments are reported. The results further verify that we can use the global sliding surface to curtail reaching the phase stage.  相似文献   

5.
In order to achieve high‐performance speed regulation for sensorless interior permanent magnet synchronous motors (IPMSMS), a robust backstepping sensorless control is presented in this paper. Firstly, instead of a real mechanical sensor, a robust terminal sliding mode observer is used to provide the rotor position. Then, a new super‐twisting algorithm (STA) based observer is designed to obtain estimates of load torque and speed. The proposed observer ensures finite‐time convergence, maintains robust to uncertainties, and eliminates the common assumption of constant or piece‐wise constant load torque. Finally, a sensorless scheme is designed to realize speed control despite parameter uncertainties, by combining the robust backstepping control with sliding mode actions and the presented sliding mode observers. The stability of the observer and controller are verified by using Lyapunov's second method to determine the design gains. Simulation results show the effectiveness of the proposed approach.  相似文献   

6.
The research on discrete‐time higher‐order sliding mode has received a considerable attention recently. Systems with unmatched uncertainties are common in practice; however, the existing discrete‐time higher‐order sliding mode control algorithms are designed considering only matched uncertainty. This paper proposes a technique to design discrete‐time higher‐order sliding mode control for an uncertain LTI system in the presence of unmatched uncertainty. The proposed technique is numerically simulated and experimentally validated on an electromechanical rectilinear plant. Various experiments are conducted considering the several operational conditions of electromechanical systems in industries to verify the performance of the proposed controller.  相似文献   

7.
Sliding‐mode control is a wide‐spread approach to a number of practical problems. The classical stability analyses of sliding‐mode control had to face the difficulty of defining a trajectory of a system whose dynamics are discontinuous in the state variable. Different generalizations of the system trajectory were suggested, such as Filippov solutions. Another generalization is based on the sample‐and‐hold framework, where the system dynamics are in continuous time and the control is changed only at certain discrete times. The current work addresses the sample‐and‐hold stability analysis of sliding‐mode control with special attention to an explicit computation of the required controller sampling time. A computational example is provided.  相似文献   

8.
9.
A method merging the features of variable structure control and neural network design is presented for speed control of a permanent magnet synchronous motor. The proposed control approach is based on a discrete‐time variable structure control and a robust digital differentiator for speed estimation. Radial basis function neural networks are used to learn about uncertainties affecting the system. A stability analysis is provided and the ultimate boundedness of the speed tracking error is proved. Control performance has been evaluated by simulations using the model of a commercial permanent magnet synchronous motor drive.  相似文献   

10.
针对传统矢量控制双馈风力发电机动态解耦不佳现象及电机参数依赖性问题,提出基于滑模变结构控制和反馈线性化控制的非线性控制策略。分别对两种策略的控制原理和优缺点进行了详细分析。在PSCAD环境中,将非线性控制策略应用于DFIG矢量控制中,建立其系统模型。仿真结果表明:提出的两种策略均能实现双馈风力发电系统最大功率点跟踪以及有功功率和无功功率解耦。对仿真结果进行对比分析,发现基于滑模变结构的系统有较好的解耦效果,较强的全局鲁棒性,控制效果优于反馈线性化控制,为双馈发电机励磁控制系统的设计奠定了理论基础。  相似文献   

11.
In this paper, we propose a design method of a tracking control law for discrete‐time linear systems with actuator saturation. The feedback gain of the control law is actively changed online so that the control performance is improved based on the information of the state variable and the reference signal. The control law is designed with considering the rate of convergence of the tracking error. The design condition of the control law is derived as polynomially parameter‐dependent matrix inequalities, and a spline‐type parameter‐dependent Lyapunov function and a convex polytope are used to reduce the design condition to a finite number of LMIs. Three numerical examples are provided to illustrate effectiveness of the method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The problem of chattering free sliding mode control for a class of uncertain discrete singular systems with state delay is investigated in this paper. As a component of the solution, a new least squares support vector machine (LS‐SVM) reaching law is proposed. In terms of linear matrix inequalities, a delay‐dependent condition for sliding mode dynamics to be regular, causal, and asymptotically stable is established, and the chattering problem that appears in traditional variable structure systems is eliminated. Numerical examples are provided to demonstrate the applicability of the proposed methods.  相似文献   

13.
Hydraulic servo control systems have been used widely in industry. Within the realm of hydraulic control systems, conventional hydraulic valve‐controlled systems have higher response and lower energy efficiency, whereas hydraulic displacement‐controlled servo systems have higher energy efficiency. This paper aims to investigate the velocity control performance of an electro‐hydraulic displacement‐controlled system (EHDCS), where the controlled hydraulic cylinder is altered by a variable displacement axial piston pump to achieve velocity control. For that, a novel adaptive fuzzy controller with self‐tuning fuzzy sliding‐mode compensation (AFC‐STFSMC) is proposed for velocity control in EHDCS. The AFC‐STFSMC approach combining adaptive fuzzy control and the self‐tuning fuzzy sliding‐mode control scheme, has the advantages of the capability of automatically adjusting the fuzzy rules and of reducing the fuzzy rules. The proposed AFC‐STFSMC scheme can design the sliding‐mode controller with no requirement on the system dynamic model, and it can be free of chattering, thereby providing stable tracking control performance and robustness against uncertainties. Moreover, the stability of the proposed scheme via the Lyapunov method is proven. Therefore, the velocity control of EHDCS controlled by AFC‐STFSMC is implemented and verified experimentally in different velocity targets and loading conditions. The experimental results show that the proposed AFC‐STFSMC method can achieve good velocity control performance and robustness in EHDCS with regard to parameter variations and external disturbance. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

14.
The concept of discrete higher‐order sliding mode has received increased attention in the recent literature. This paper presents an optimal discrete higher‐order sliding mode control for an uncertain discrete LTI system using partial state information, which has been missing in literature. A new technique is proposed to design an optimal time‐varying higher‐order sliding surface and control input through the minimization of a quadratic performance index. Moreover, disturbance estimation technique is utilized to modify the control algorithm to reduce the width of the discrete higher‐order sliding mode band. The proposed algorithm is experimentally validated on a rectilinear plant. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, distributed finite‐time containment control for multiple Euler‐Lagrange systems with communication delays and general disturbances is investigated under directed topology by using sliding‐mode control technique. We consider that the information of dynamic leaders can be obtained by only a portion of the followers. Firstly, a nonsingular fast terminal sliding surface is selected to achieve the finite‐time convergence for the error variables. Then, a distributed finite‐time containment control algorithm is proposed where the neural network is utilized to approximate the model uncertainties and external disturbances of the systems. Furthermore, considering that error constraint method can improve the performance of the systems, a distributed finite‐time containment control algorithm is developed by transforming the error variable into another form. It is demonstrated that the containment errors are bounded in finite time by using Lyapunov theory, graph theory, and finite‐time stability theory. Numerical simulations are provided to show the effectiveness of the proposed methods.  相似文献   

16.
The control effectors of reusable launch vehicle (RLV) can produce significant perturbations and faults in reentry phase. Such a challenge imposes tight requirements to enhance the robustness of vehicle autopilot. Focusing on this problem, a novel finite‐time fault‐tolerant control strategy is proposed for reentry RLV in this paper. The key of this strategy is to design an adaptive‐gain multivariable finite‐time disturbance observer (FDO) to estimate the synthetical perturbation with unknown bounds, which is composed of model uncertainty, external disturbance, and actuator fault considered as the partial loss of actuator effectiveness in this work. Then, combined with the finite‐time high‐order observer and differentiator, a continuous homogeneous second‐order sliding mode controller based on the terminal sliding mode and super‐twisting algorithm is designed to achieve a fast and accurate RLV attitude tracking with chattering attenuation. The main features of the integrated control strategy are that the adaptation algorithm of FDO can achieve non‐overestimating values of the observer gains and the second‐order super‐twisting sliding mode approach can obtain a more elegant solution in finite time. Finally, simulation results of classical RLV (X‐33) are provided to verify the effectiveness and robustness of the proposed fault‐tolerant controller in tracking the guidance commands. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
针对风力机变桨距执行机构突变故障,提出了基于风速估计的自适应状态反馈滑模容错控制策略.首先,设计了基于自适应状态反馈滑模理论的鲁棒主动容错控制器,并结合全阶补偿器对控制律进行设计;然后,利用基于变速灰狼优化算法的组合径向基函数神经网络实现风速估计,可以改善风速测量精度并提高控制系统可靠性;最后,根据线性矩阵不等式和Lyapunov理论对控制器稳定性进行讨论,并与现有控制策略进行比较.仿真结果表明,在健康/故障的变桨距执行机构条件下,所提容错控制方法均能获得较好的控制效果.  相似文献   

18.
In general, a Variable Structure (VS) system is designed with a sliding mode. Recently a sliding sector, designed by an algebraic Riccati equation, has been proposed to replace the sliding mode for chattering‐free VS controllers. In this paper we extend the design algorithm for the sliding sector to a time‐varying sliding sector. The time‐varying sliding sector is defined by functions dependent on both state and time, hence time‐varying uncertainty can be considered. The VS controller is designed to stabilize an uncertain system, quadratically. The design procedure for real systems is introduced via an implementation to the control of “Furuta pendulum”. To enhance the stability it is necessary to compensate the time‐varying nonlinear static friction of the actuator adequately, hence this problem is a good example to demonstrate the performance of the proposed VS control method. In the experiment, it will be shown that the VS control with the time‐varying sliding sector is superior to an orthodox chattering‐free VS control.  相似文献   

19.
To design an rth (r>2) order sliding mode control system, a sliding variable and its derivatives of up to (r ? 1) are in general required for the control implementation. This paper proposes a reduced‐order design algorithm using only the sliding variable and its derivatives of up to (r ? 2) as the extension of the second‐order asymptotic sliding mode control. For a linear time‐invariant continuous‐time system with disturbances, it is found that a high‐order sliding mode can be reached locally and asymptotically by a reduced‐order sliding mode control law if the sum of the system poles is less than the sum of the system zeros. The robust stability of the reduced‐order high‐order sliding mode control system, including the convergence to the high‐order sliding mode and the convergence to the origin is proved by two Lyapunov functions. Simulation results show the effectiveness of the proposed control algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The conventional approach to reducing control signal chattering in sliding mode control is to use the boundary layer design. However, when there is high‐level measurement noise, the boundary layer design becomes ineffective in chattering reduction. This paper, therefore, proposes a new design for chattering reduction by low‐pass filtering the control signal. The new design is non‐trivial since it requires estimation of the sliding variable via a disturbance estimator. The new sliding mode control has the same performance as the boundary layer design in noise‐free environments, and outperforms the boundary layer design in noisy environments. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号