首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
张华  吴宏宇  李永 《节能技术》2011,29(2):167-171
对太阳能热水系统和地源热泵热回收热水系统进行分析,并通过某一实际工程对两系统能耗进行了对比,最后得到对于南京地区地源热泵热回收制热水系统更节能。为合理选择热水供应系统提供一定的依据。  相似文献   

2.
《节能》2020,(2):66-68
随着国家和广西对可再生能源开发利用的相关政策及法律法规相继出台,可再生能源开发利用规模不断扩大,其中对太阳能热水及太阳能光伏发电系统的应用较为普遍,相关的数据和分析较多。但由于初投资及系统复杂性等原因,广西区内采用地源热泵系统利用浅层地能的项目相对较少,相关数据和分析就更少。以广西某市实际项目为例,介绍地表水地源热泵空调、热水系统设计,并与常规空调热水系统对比分析地表水地源热泵系统在项目运用的优劣性,为类似项目的地表水地源热泵空调、热水系统应用提供借鉴。  相似文献   

3.
混和型地源热泵系统运行特性试验研究   总被引:2,自引:0,他引:2  
林俊  胡映宁  李助军  王成勇 《太阳能学报》2007,28(11):1206-1212
介绍了自主设计实施的土壤换热器与冷却塔并联以及土壤源与空气源并联的两种混合型地源热泵系统,并对两种混合型地源热泵系统的运行特性进行了实验研究。实验采用单因素实验方法,研究了热水温度、循环水泵功率、环境温度对不同混合型地源热泵系统制热能效比的影响,提出了系统在不同工况下的合理运行方式。  相似文献   

4.
南宁市青山路某职业技术学院在建的3栋31层教职工住宅楼(共360套住房,总建筑面积约5.5万平方米)需要解决生活热水供应问题。根据有关规定,该建筑采用了地源热泵技术节能方案供应热水。本文对该职院住宅楼生活热水供应方案中的地源热泵技术应用进行分析、设计.并介绍地源热泵生活热水供应系统地下换热器施工过程。  相似文献   

5.
以上海某别墅小区水泵机房的热水系统节能技术改造为例,分析了集中式热水系统的节能方案。通过改造采用的地源热泵热水系统的运行能耗数据监测,对其节能效益进行了验证。对比实际数据发现该方案的节能改造明显提高了热水供热效率,降低了别墅小区的热水制热成本。  相似文献   

6.
本系统采用天然气发电机组、溴化锂机组和地源热泵机组等组成高效的热电冷三联供系统。夏季,溴化锂机组和地源热泵机组产生的冷水汇总送至用冷区域用于制冷;冬季,发电机组冷却高低温循环水通过板式换热器产生与地源热泵机组和溴化锂机组品质相同的热水,汇总送至用热区域用于采暖。本文阐述了利用燃气内燃机发电的余热,带动溴化锂机组,结合地源热泵技术,提高了能源的梯级利用,满足了用户的能量需求,同时大幅度减少能源费用支出。  相似文献   

7.
本系统采用天然气发电机组、溴化锂机组和地源热泵机组等组成高效的热电冷三联供系统。夏季,溴化锂机组和地源热泵机组产生的冷水汇总送至用冷区域用于制冷;冬季,发电机组冷却高低温循环水通过板式换热器产生与地源热泵机组和溴化锂机组品质相同的热水,汇总送至用热区域用于采暖。本文阐述了利用燃气内燃机发电的余热,带动溴化锂机组,结合地源热泵技术,提高了能源的梯级利用,满足了用户的能量需求,同时大幅度减少能源费用支出。  相似文献   

8.
CO2跨临界循环地源热泵的研究   总被引:2,自引:0,他引:2  
给出了CO2跨临界循环地源热泵的系统流程,并在考虑输气系数和绝热效率的基础上,与R22和R134a等进行了循环性能比较。结果表明,用于需要较高供水温度的空调系统或热水供应系统时,CO2可具有和常规工质相当的性能。同时对于一特定的CO2地源热泵,分析了在热水流量和热水温度变化时的运行特性,并讨论了CO2地源热泵容量调节的方法。  相似文献   

9.
以韶山某宾馆地源热泵系统供冷、供热、全年提供生活热水为例,与传统空调系统在初投资、运行费用、生态效益三方面进行了比较,阐明了地源热泵在绿色酒店应用的节能性与环保性。  相似文献   

10.
空气源热泵热水系统在我省煤矿的应用   总被引:1,自引:0,他引:1  
空气源热泵热水器是一种利用可再生能源的既节能又环保的制热设备.通过对我省煤矿地面澡堂热水系统采用传统燃煤锅炉供热和空气源热泵供热的性能对比、理论计算和具体应用,进一步说明煤矿采用空气源热泵热水系统的优越性,对企业进一步贯彻落实节能减排政策、加强环境保护工作,建设一个安全、节能、环保的绿色矿山具有重要意义.  相似文献   

11.
张伟  朱家玲  胡涛 《太阳能学报》2011,32(4):496-500
在分析太阳能、土壤源热泵及联合供热特点的基础上,研究了太阳能热泵独立系统、土壤源耦合热泵系统运行模式的制热性能和节能效果,建立了太阳能蓄能-热泵耦合热泵系统的供暖模式及优化模型.通过采暖季初期的太阳能蓄能、供暖,土壤源热泵独立供暖及太阳能-土壤源耦合热泵供热的实验研究,验证了太阳能-土壤源耦合热泵供暖模式的可行性和经济...  相似文献   

12.
This paper presents the cooling performance of a water-to-refrigerant type ground heat source heat pump system (GSHP) installed in a school building in Korea. The evaluation of the cooling performance has been conducted under the actual operation of GSHP system in the summer of year 2007. Ten heat pump units with the capacity of 10 HP each were installed in the building. Also, a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth was constructed for the GSHP system. To analyze the cooling performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the water temperature of inlet and outlet of the ground heat exchanger. Simultaneously, the cooling capacity and the input power were evaluated to determine the cooling performance of the GSHP system. The average cooling coefficient of performance (COP) and overall COP of the GSHP system were found to be ~8.3 and ~5.9 at 65% partial load condition, respectively. While the air source heat pump (ASHP) system, which has the same capacity with the GSHP system, was found to have the average COP of ~3.9 and overall COP of ~3.4, implying that the GSHP system is more efficient than the ASHP system due to its lower temperature of condenser.  相似文献   

13.
Being environmental friendly and with the potential of energy-efficiency, ground-source heat pump (GSHP) systems are widely used. However, in southern China, there exists large difference between cooling load in summer and heating load in winter. Thus the increase of soil temperature gradually year-by-year will decrease the COP of the GSHP system. In this paper, the configuration of a vertical dual-function geothermal heat exchanger (GHE) used in an integrated soil cold storage and ground-source heat pump (ISCS&GSHP) system, which charged cold energy to the soil at night and produced chilled water at daytime in summer, and supplied hot water for heating in winter, is presented. This is then followed by reporting the development of the mathematical model for the GHE considering the impact of the coupled heat conduction and groundwater advection on the heat transfer between the GHE and its surrounding soil. The GHE model developed was then integrated with a water-source heat pump and a building energy simulation program together for a whole ISCS&GSHP system. Then the operation performance of the ISCS&GSHP system used for a demonstration building is studied. These simulation results indicated the system transferred 71.505% of the original power consumption at daytime to that at nighttime for the demonstration building. And the net energy exchange in the soil after one-year operation was only 2.28% of the total cold energy charged. Thus we can see the feasibility of the ISCS&GSHP system technically.  相似文献   

14.
With attractive advantages of high efficiency, energy saving and environmental friendliness, the ground source heat pump (GSHP) system has been used widely in China in recent years. This paper summarizes the analytical solution, numerical solution and experimental investigation of the heat transfer of the ground heat exchanger (GHE), analyzes the simulation model and long-term operation performance of the GSHP system, and introduces the lastest hybrid ground source heat pump (HGSHP) system. In addition, this paper discusses and summarizes the shortages and imperfects of the current research on the simulation of the GSHP system and gives some recommendations for future work.  相似文献   

15.
地源热泵供暖空调的经济性   总被引:9,自引:1,他引:8  
李新国  赵军  朱强 《太阳能学报》2001,22(4):418-421
地源热泵是利用地表浅层土壤能量(地下水、土壤或地表水)作为冬季热泵热源供暖和夏季冷源进行空调的系统,地源温度全年相对稳定的特性使得地源热泵比传统空调系统运行效率要高,地源热泵是否具有经济竞争性仍是一个非常关键的问题,该文对地源热泵与传统的供暖空调系统进行经济性比较。首先将地源热泵与传统供暖方式,如燃煤、燃油和天然气锅炉进行供暖经济性的比较,再将地源热泵与常规电制冷空调方式进行空调经济性的比较,然后将地源热泵与锅炉加空调两种方式共四种方式共四种方案进行综合经济性的比较分析。  相似文献   

16.
岩土导热系数是地源热泵地埋管换热器的重要设计参数;测井单位深度换热量是地埋管换热器系统的设计依据。掌握工程区域岩土的热物性及换热性能,是保证地源热泵系统高效、稳定运行的关键。文章建立了现场测试岩土导热系数及换热量的方法,并结合沈阳浑南高新技术产业开发区某地源热泵工程,测试分析了岩土导热系数和测井单位深度换热量。结果表明,该区域的岩土具有较好的导热能力,适合采用地埋管地源热泵系统;在特殊地理条件下设计地源热泵系统方案前,应对拟建区域的地质条件进行全面勘探,以优选工程区域,为岩土热响应测试结果的可靠性提供保障。  相似文献   

17.
18.
Ground source heat pumps (GSHP) are attractive alternatives to conventional heating and cooling systems owing to their higher energy utilization efficiency. In this paper, the effect of various system parameters on GSHP performance is studied using a computer model. Also, a comparative economic evaluation is carried out to assess the feasibility of using a GSHP in place of conventional heating/cooling systems and an air source heat pump. The results indicate that system parameters can have a significant effect on performance, and that GSHP is economically preferable to conventional systems. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
Being environmental friendly and with the potential of energy-efficiency, more and more ground-source heat pump (GSHP) systems are being widely used. However, the influence of groundwater advection on the performance of the geothermal heat exchanger (GHE) in a GSHP is not still clearly known. In this paper, the configuration of a vertical dual-function GHE used in an integrated soil cold storage and ground-source heat pump (ISCS&GSHP) system, which charged cold energy to soil at night and produced chilled water in daytime in summer, and hot water for heating in winter, is firstly presented. This is then followed by a report on a mathematical model for the GHE considering the impact of the coupled heat conduction and groundwater advection on the heat transfer between the GHE and its surrounding soil. The GHE model developed was then integrated into a previously developed simulation program for an ISCS&GSHP system, and the operating performances of the GHE in an ISCS&GSHP system having a vertical dual-function GHE have been studied by simulation and reported. These simulation results, firstly seen in open literature, are much helpful to the design of a GHE buried in soil and widely used in GSHP systems or ISCS&GSHP systems.  相似文献   

20.
Technology directed at geothermal energy, one of our renewable energy sources, to heat and air-condition buildings has become very attractive in recent years following the significant developments in ground-source heat pump (GSHP) systems. In general, although the energy efficiency of GSHP systems is far superior to conventional air-source heat pump (ASHP) systems, GSHP system is still expensive. Therefore, GSHP system employs the foundation pile of buildings as heat exchanger is introduced in order to reduce the initial cost. When designing a GSHP system (especially in case of the energy pile system), it is necessary to accurately predict the heat extraction and injection rates of the heat exchanger. The thermal and hydraulic properties of the ground are very important to accurately predict heat transfer between the ground heat exchanger and the ground. In particular, those are the most important design parameters because energy pile system is installed only a few tens of meters deep. In this paper, an estimation method is suggested in order to determine the thermal and hydraulic properties of the ground for design the heat exchanger of energy pile system base on geotechnical investigation for the design the building's foundations. The use of results from generally applied geotechnical site investigation methods to estimate ground thermal and hydraulic properties was evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号