共查询到19条相似文献,搜索用时 69 毫秒
1.
提出了一种分水岭变换和结合空间信息的FCM聚类相结合的图像分割方法。方法采用基于图论的结合区域特征信息和空间信息的距离度量,以分水岭变换得到的图像分割小区域为节点构建一个连通加权图,通过计算图上不同节点之间的最短路径来度量不同区域之间的相似程度,从而实现过分割小区域的合并。该方法综合考虑了区域的特征之间的差异和空间位置的差异,与传统的FCM聚类方法在特征空间进行聚类相比,具有较强的噪声抑制能力。图像分割的实验结果证明了该算法的可行性和有效性。 相似文献
2.
基于空间信息的可能性模糊C均值聚类遥感图像分割 总被引:1,自引:0,他引:1
可能性模糊C均值(PFCM)聚类算法作为模糊C均值(FCM)聚类算法的一种改进算法,能在一定程度上克服FCM算法对噪声的敏感性;但由于PFCM没有考虑像元间的空间信息,对含有较大噪声的图像分割效果依然不理想。为此,提出一种新的基于空间信息的PFCM算法(SPFCM),克服了PFCM算法对含有较大噪声的图像分割效果不佳的缺点。通过对人工图像和IKONOS遥感图像进行分析,结果表明,SPFCM算法无论是在视觉上还是在分割正确率上都优于传统的FCM算法、PFCM算法及两种加入空间信息的FCM算法;对于含有高斯噪声和盐椒噪声的图像,平均分割正确率高达99.71%,是一种去噪效果较好的图像分割算法。 相似文献
3.
根据局部统计信息引入一个控制参数用于区分某个空间邻域中的噪声点、边缘点和区域内部的点,提出一种合理利用空间信息对隶属度更新的FCM算法。仿真结果表明,使用该算法对附加有偏差场和噪声的脑MR图像进行分割,所得的结果相对于FCM算法和一些改进的算法具有更好的紧致性和分离性。 相似文献
4.
结合空间信息的模糊C均值聚类图像分割算法 总被引:3,自引:0,他引:3
提出一种结合空间信息的模糊C均值聚类图像分割算法.该方法将图像的二维直方图引入传统的模糊C均值聚类算法,并对隶属函数做了改进;依据平方误差和最小准则,来确定模糊分类矩阵及聚类中心;最后,依据最大隶属度原则,划分图像像素的类别归属.实验结果表明,该方法能快速有效地分割图像,并且具有较强的抗噪能力. 相似文献
5.
本文分析了模糊聚类在图像分割领域的应用,介绍了模糊集和聚类分析的作用,最后引出了模糊C均值聚类图像分割算法。 相似文献
6.
基于改进FCM聚类算法的火灾图像分割 总被引:1,自引:0,他引:1
研究火灾识别问题,火灾图像分割是火灾特征提取和识别的前提,其分割效果直接影响火灾识别的准确率.针对现有分割方法中存在的经验阈值难以确定和因彩色信息丢失导致分割不准确等问题,为了准确识别火灾图像,提出一种改进的FCM聚类的火灾图像分割方法.方法选用符合人眼视觉特性的HSI颜色空间,根据数据分布特点确定色度分量H和亮度分量Ⅰ的初始聚类中心,分别在直方图特征空间进行模糊聚类处理,并利用像素的空间信息对模糊隶属度函数做了改进,最后在由两分量的模糊隶属度组成的二维特征空间上进行火灾图像分割.实验结果表明,算法可排除高亮区域的干扰,准确分割出火焰区域,为后续的火灾识别提供重要依据. 相似文献
7.
在经典的融合空间信息的模糊聚类图像分割方法中,图像像素的空间信息大,都采用正方形的邻域窗来获取。为了更好地分割出图像中的边界及细节信息,对不同形状邻域空间信息的模糊聚类图像分割进行了研究。在该方法中,首先采用圆形、三角形和菱形邻域窗获得图像像素的空间信息,然后分别将这三种空间信息引入到融合空间信息的模糊聚类图像分割中。Berkeley图像上的分割实验表明分别采用圆形、三角形和菱形邻域窗获得图像像素空间信息的模糊聚类图像分割方法在分割性能上要优于融合正方形邻域窗空间信息的方法。 相似文献
8.
传统的模糊C均值聚类算法(FcM)广泛应用于图像分割。但FCM算法容易陷入局部最优,且对噪声敏感。提出用种子填充和形态学的方法对人脑图像进行颅骨剔除,用内核引导的距离代替欧式距离,并利用空间信息,提出结合空间信息的核FCM人脑MR分割算法。实验表明该算法有很好的分割效果,对噪声具有较强的鲁棒性。 相似文献
9.
为了更好地改善图像分割效果,提出一种自适应空间信息的模糊聚类算法(adaptive spatial information fuzzy clustering,ASIFC).算法将图像空间信息与FCM算法相结合,改进了FCM算法的目标函数;使用信息最大化识别噪声数据和消除异常值.在合成图像和核磁共振脑部图像数据库Brainweb上的实验结果表明,该算法能自适应地实现图像分割,有效识别噪声数据,解决了FCM的空间信息缺乏问题,增强了算法的鲁棒性,相比其他几种较新的聚类算法,取得了更好的分割效果. 相似文献
10.
模糊C均值算法(FCM)具有良好的聚类性能从而被广泛应用于图像分割领域,但其存在距离测度鲁棒性差、需预先给出初始聚类数目、未考虑图像局部相关特性等问题。本质上讲,FCM算法是一种局部搜索优化算法,如果初始值选择不当,不仅需要更多的迭代次数,而且会收敛到局部最优解。针对上述问题,结合进化聚类(ECM)和FCM算法,提出了一种遥感图像分割的新方法。利用ECM解决模糊C均值聚类算法的初始化中心选择问题,再利用FCM算法对获得的聚类中心进行优化,完成模糊聚类划分,通过去模糊化转换为确定性分类,实现聚类分割。实验结 相似文献
11.
12.
极限学习机(Extreme learning machine, ELM)作为一种新技术具有在回归和分类中良好的泛化性能。局部空间信息的模糊C均值算法(Weighted fuzzy local information C-means, WFLICM)用邻域像素点的空间信息标记中心点的影响因子,增强了模糊C均值聚类算法的去噪声能力。基于极限学习机理论,对WFLICM进行改进优化,提出了基于ELM的局部空间信息的模糊C均值聚类图像分割算法(New kernel weighted fuzzy local information C-means based on ELM,ELM-NKWFLICM)。该方法基于ELM特征映射技术,将原始数据通过ELM特征映射技术映射到高维ELM隐空间中,再用改进的新核局部空间信息的模糊C均值聚类图像分割算法(New kernel weighted fuzzy local information C-means,NKWFLICM)进行聚类。 实验结果表明 ELM-NKWFLICM算法具有比WFLICM算法更强的去噪声能力,且很好地保留了原图像的细节,算法在处理复杂非线性数据时更高效, 同时克服了模糊聚类算法对模糊指数的敏感性问题。 相似文献
13.
针对分水岭变换算法对噪声敏感和易于产生过分割的问题,提出了一种基于分水岭变换和模糊C均值聚类(FCM)的图像分割算法。该算法不仅解决了分水岭变换算法的过分割问题,而且同时解决了FCM算法初始值难以确定的不足。实验结果显示,该算法可以快速准确地分割出目标,是一种有效的方法。 相似文献
14.
针对FCM算法在图像分割时存在选取初始聚类中心不佳与算法抗噪性差的问题,提出一种融合空间信息的改进FCM图像分割算法;首先采用了直方图算法和LOF算法自适应地选取初始聚类中心,之后使用马尔科夫随机场得到先验概率改进目标函数,使用修正隶属度矩阵的方法改进算法流程,最后使用改进算法进行图像分割;为验证该算法性能,使用Berkeley图像数据集作为实验数据,选取Dice系数、JS系数、SA系数、PSNR指数、运行时间及迭代次数作为评价标准;实验结果表明,该算法能够获取更优初始聚类中心,在处理不同噪声图像上有更好的鲁棒性。 相似文献
15.
图像分割是模式识别、图像理解、计算机视觉等领域的重要研究内容。基于模糊C均值聚类(FCM)的图像分割是应用较为广泛的方法之一,但其存在距离测度鲁棒性差、需预先给出初始聚类数目、未考虑图像局部相关特性等问题。为克服上述缺点,通过引入特征散度进行距离测度,并结合聚类有效性指数自适应确定初始聚类数目和根据Laws纹理测度提取图像特征等措施,提出了一种新的FCM图像分割算法。实验结果表明,该新算法可以有效地提高图像的分割效果(特别是纹理图像),其分割结果优于现有FCM图像分割方案。 相似文献
16.
基于小波图像融合算法和改进FCM聚类的MR脑部图像分割算法 总被引:1,自引:0,他引:1
针对很多基于模糊C均值(FCM)的图像分割算法存在对噪声敏感和分割轮廓不清晰等问题,提出一种基于小波变换图像融合算法和FCM聚类算法的MR医学图像分割算法。在图像分割系统的第一阶段,利用Haar小波多分辨率特性保持像素间的空间信息;第二阶段,利用小波图像融合算法对得到的多分辨率图像和原始图像进行融合,进而增强被处理图像的清晰度并降低噪声;第三阶段,利用改进型FCM技术对所处理的图像进行分割。在BrainWeb数据集上进行实验,与现有相关算法相比,提出的算法具有较高的分割精度,且对噪声的鲁棒性比较强,处理时间也没有明显增加。 相似文献
17.
针对机器视觉中的多目标图像分割问题,提出一种适用于多目标物体的图像分割算法.首先对图像进行图像增强预处理;然后采用基于直方图的模糊C均值聚类算法完成分类任务,实现图像的初分割,将分类后的像素作为种子集;最后利用离散正则化的半监督方法得到自动修正分类结果.实验结果表明,与已有的多目标分割算法相比,该算法分割结果更加精确. 相似文献
18.
19.
FCM聚类算法对初始值敏感,不良的初始值会导致算法的收敛速度过慢和收敛到局部极值。将FEM算法用于图像分割处理时,初始值的选择是一个难点。文中提出了一种使用自适应初始值的FCM聚类图像分割算法,该方法利用图像的直方图特性建立候选聚类中心集,通过初始化准则函数检验候选集得到合适的聚类中心和聚类数目,并根据最大隶属度原则分割图像,得到了较好的分割效果。理论分析和实验表明文中方法收敛速度快,分割准确,自适应性很强。 相似文献