首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An Al2O3-ZrO2 xerogel (AZ-SG) was prepared by a sol-gel method for use as a support for a nickel catalyst. The Ni/AZ-SG catalyst was then prepared by an impregnation method, and was applied to hydrogen production by steam reforming of LNG. A nickel catalyst supported on commercial alumina (A-C) was also prepared (Ni/A-C) for comparison. The hydroxyl-rich surface of the AZ-SG support increased the dispersion of nickel species on the support during the calcination step. The formation of a surface nickel aluminate-like phase in the Ni/AZ-SG catalyst greatly enhanced the reducibility of the Ni/AZ-SG catalyst. The ZrO2 in the AZ-SG support increased the adsorption of steam onto the support and the subsequent spillover of steam from the support to the active nickel sites in the Ni/AZ-SG catalyst. Both the high surface area and the well-developed mesoporosity of the Ni/AZ-SG catalyst improved the gasification of adsorbed surface hydrocarbons in the reaction. In the steam reforming of LNG, the Ni/AZ-SG catalyst showed a better catalytic performance than the Ni/A-C catalyst. Moreover, the Ni/AZ-SG catalyst showed strong resistance toward catalyst deactivation.  相似文献   

2.
A 10%Co/ZrO2 catalyst prepared by impregnation was tested for its activity for the oxidation of CO to CO2 in excess oxygen. Activity tests showed that conversion could be obtained at temperatures as low as 20 °C. Time-on-stream studies showed no loss of activity in these experiments, indicating that this catalyst is stable in the experimental oxidizing conditions. The activation energy for the CO to CO2 oxidation reaction was calculated as Ea = 54 kJ/mol over this catalyst. Characterization of the material by thermogravimetric analysis, temperature-programmed techniques, X-ray photoelectron spectroscopy, and laser Raman spectroscopy indicate that Co3O4 is present on monoclinic ZrO2 after the calcination of the catalyst.  相似文献   

3.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made.  相似文献   

4.
Cu/ZnO/ZrO2 catalysts were prepared by a route of solid-state reaction and tested for the synthesis of methanol from CO2 hydrogenation. The effects of calcination temperature on the physicochemical properties of as-prepared catalysts were investigated by N2 adsorption, XRD, TEM, N2O titration and H2-TPR techniques. The results show that the dispersion of copper species decreases with the increase in calcination temperature. Meanwhile, the phase transformation of zirconia from tetragonal to monoclinic was observed. The highest activity was achieved over the catalyst calcined at 400 °C. This method is a promising alternative for the preparation of highly efficient Cu/ZnO/ZrO2 catalysts.  相似文献   

5.
The solid acid catalysts SO42?/ZrO2 were prepared by impregnation technique at different calcination temperatures. The surface characterizations were carried out by using scanning electron microscope (SEM), Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), temperature programed desorption of NH3 (NH3-TPD), and N2-BET. The SEM results showed that the size of the SO42?/ZrO2 was not uniform and varied from about 1 to 20?µm. The characteristic peaks in FTIR spectra were essentially the same within the calcination temperature range of 400–700?°C. The XRD results indicated that the transition temperature from amorphous to tetragonal phase was up to 500?°C. The strong acid and superacid sites of the samples could be observed by the NH3-TPD results. The largest BET surface area was 140 m2/g, when the calcination temperature was at 500?°C, and all the pore size distributions belong to mesoporous range. The solid acid SO42?/ZrO2 was used for the epoxidation of castor oil. When the calcination temperature of SO42?/ZrO2 was 600?°C, reaction temperature 45?°C, and reaction time 8?h, the reaction effect was better with an iodine value of 33.0?±?1.6?g/100?g and an epoxy value of 2.45?±?0.11?mol/100?g.  相似文献   

6.
CeO2–ZrO2 solid solution catalysts are very effective for the selective synthesis of dimethyl carbonate from methanol and CO2. The activity was much dependent on the calcination temperature. The higher the calcination temperature, the higher the activity of the catalyst for DMC formation, though the BET surface area is lower on the catalyst calcined at higher temperature.  相似文献   

7.
The NOx storage and reduction (NSR) catalysts Pt/K/TiO2–ZrO2 were prepared by an impregnation method. The techniques of XRD, NH3-TPD, CO2-TPD, H2-TPR and in situDRIFTS were employed to investigate their NOx storage behavior and sulfur-resisting performance. It is revealed that the storage capacity and sulfur-resisting ability of these catalysts depend strongly on the calcination temperature of the support. The catalyst with theist support calcined at 500 °C, exhibits the largest specific surface area but the lowest storage capacity. With increasing calcination temperature, the NOx storage capacity of the catalyst improves greatly, but the sulfur-resisting ability of the catalyst decreases. In situ DRIFTS results show that free nitrate species and bulk sulfates are the main storage and sulfation species, respectively, for all the catalysts studied. The CO2-TPD results indicate that the decomposition performance of K2CO3 is largely determined by the surface property of the TiO2–ZrO2 support. The interaction between the surface hydroxyl of the support and K2CO3 promotes the decomposition of K2CO3 to form –OK groups bound to the support, leading to low NOx storage capacity but high sulfur-resisting ability, while the interaction between the highly dispersed K2CO3 species and Lewis acid sites gives rise to high NOx storage capacity but decreased sulfur-resisting ability. The optimal calcination temperature of TiO2–ZrO2 support is 650 °C.  相似文献   

8.
A 0.5 wt% Pd/LaCoO3, prepared by flame-spray pyrolysis (FP), was tested as catalyst for the low-temperature selective reduction of NO by H2 in the presence of excess O2. In particular, the effect of the precalcination and prereduction temperature on catalytic activity was compared with that of a similar Pd/LaCoO3 sample prepared by impregnation with a Pd solution of FP-prepared LaCoO3. The FP-made catalyst allowed full NO conversion at 150 °C, with 78% selectivity to N2, thus outperforming the catalytic behavior of the corresponding sample prepared by impregnation. The higher activity of the FP-made catalyst has been attributed to the formation of segregated Co metal particles, not present in the impregnated sample, formed during the precalcination at 800 °C, followed by reduction at 300 °C. Two reaction mechanisms can be deduced from the temperature-programmed experiments. The first of these, occurring at lower temperatures, indicates cooperation between the Pd and Co metal particles, with formation of active nitrates on cobalt, successively reduced by hydrogen spillover from Pd. The second, occurring at higher temperature, allows 50% conversion of NO, with >90% selectivity to N2, and involves N adatoms formed by dissociative NO adsorption over Pd. Prereduction at 600 °C led to a slight increase in catalytic activity, due to the formation of a PdCo alloy, which is more stable on reoxidization compared with Pd alone. Moreover, the cooperative reaction mechanism seems to be favored by the proximity of Co and Pd in metal particles.  相似文献   

9.
The selective production of hydrogen via steam reforming of methanol (SRM) was performed using prepared catalysts at atmospheric pressure over a temperature range 200–260C. Reverse water gas shift reaction and methanol decomposition reactions also take place simultaneously with the steam reforming reaction producing carbon monoxide which is highly poisonous to the platinum anode of PEM fuel cell, therefore the detailed study of effect of catalyst preparation method and of different promoters on SRM has been carried out for the minimization of carbon monoxide formation and maximization of hydrogen production. Wet impregnation and co-precipitation methods have been comparatively examined for the preparation of precursors to Cu(Zn)(Al2O3) and Cu(Zn)(Zr)(Al2O3). The catalyst preparation method affected the methanol conversion, hydrogen yield and carbon monoxide formation significantly. Incorporation of zirconia in Cu(Zn)(Al2O3) catalyst enhanced the catalytic activity, hydrogen selectivity and also lower the CO formation. Catalyst Cu(Zn)(Zr)(Al2O3) with composition Cu/Zn/Zr/Al:12/4/4/80 prepared by co-precipitation method was the most active catalyst giving methanol conversion up to 97% and CO concentration up to 400 ppm. Catalysts were characterized by atomic absorption spectroscopy (AAS), Brunauer-Emett-Teller (BET) surface area, pore volume, pore size and X-ray powder diffraction (XRPD). The XRPD patterns revealed that the addition of zirconia improves the dispersion of copper which resulted in the better catalytic performance of Cu(Zn)(Zr)(Al2O3). The time-on-stream (TOS) catalysts stability test was also conducted for which the Cu(Zn)(Zr)(Al2O3) catalyst gave the consistent performance for a long time compared to other catalysts.  相似文献   

10.
An Al2O3-ZrO2 support was prepared by grafting a zirconium precursor onto the surface of commercial γ-Al2O3. A physical mixture of Al2O3-ZrO2 was also prepared for the purpose of comparison. Ni/Al2O3-ZrO2 catalysts were then prepared by an impregnation method, and were applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). The effect ZrO2 and preparation method of Al2O3-ZrO2 on the performance of supported nickel catalysts in the steam reforming of LNG was investigated. The Al2O3-ZrO2 prepared by a grafting method was more efficient as a support for nickel catalyst than the physical mixture of Al2O3-ZrO2 in the hydrogen production by steam reforming of LNG. The well-developed tetragonal phase of ZrO2 and the high dispersion of ZrO2 on the surface of γ-Al2O3 were responsible for the enhanced catalytic performance of Ni/Al2O3-ZrO2 prepared by way of a grafting method.  相似文献   

11.
A series of catalysts, NiSO4/TiO2–ZrO2 having different TiO2–ZrO2 composition, for acid catalysis was prepared by the impregnation method using an aqueous solution of nickel sulfate. The addition of TiO2 to ZrO2 improved the surface area of the catalyst and enhanced its acidity remarkably because of the formation of new acid sites through the charge imbalance of Ti–O–Zr bonding. The binary oxide, TiO2–ZrO2 calcined above 600 °C resulted in the formation of crystalline orthorhombic phase of ZrTiO4. Therefore, NiSO4/TiO2–ZrO2 calcined at 500 °C exhibited a maximum catalytic activity for acid catalysis, and then the catalytic activity decreased with the calcination temperature. The correlation between catalytic activity and acidity held for both reaction, 2-propanol dehydration and cumene dealkylation. NiSO4 supported on 50TiO2–50ZrO2 (TiO2/ZrO2 ratio = 1) among TiO2–ZrO2 binary oxides exhibited the highest catalytic activity for acid catalysis.  相似文献   

12.
Trimerization of isobutene to produce isobutene trimers has been investigated over WOx/ZrO2 catalysts that were obtained by wet-impregnation and successive calcination at high temperatures. Very stable isobutene conversion and high selectivity for trimers are attained over a WOx/ZrO2 catalyst obtained by calcination at 700 °C. From the XRD study it can be understood that tetragonal ZrO2 is beneficial for stable performance; however, monoclinic ZrO2 is not good for trimerization. Nitrogen adsorption and FTIR experiments suggest that amorphous WOx/ZrO2 is inefficient catalyst even though it has high surface area and high concentration of acid sites. The observed performance with the increased selectivity and stable conversion demonstrates that a WOx/ZrO2 having tetragonal zirconia, even with decreased porosity and acid sites, is one of the best catalysts to exhibit stable and high conversion, high selectivity for trimers and facile regeneration.  相似文献   

13.
CH4/CO2 reforming over Pt/ZrO2, Pt/CeO2 and Pt/ZrO2 with CeO2 was investigated at 2 MPa. Pt/ZrO2, which shows stable activity under 0.1 MPa, and Pt/CeO2 showed gradual deactivation with time at the high pressure. The deactivation was suppressed drastically on Pt/ZrO2 with CeO2 prepared by different impregnation order (co-impregnation of Pt and CeO2 on ZrO2, and consecutive impregnation of Pt and CeO2 on ZrO2). The amount of coke deposition was found insignificant and similar among all the catalysts (including Pt/ZrO2 and Pt/CeO2). Catalytic activity after the reaction for 24 h was in agreement with Pt particle size after the reaction for same period, indicating that the difference of the catalytic stability is mainly dependent on the extent of Pt aggregation through catalyst preparation, H2 reduction, and the CH4/CO2 reforming. Pt aggregation and the amount of coke deposition were least pronounced on (Pt–Ce)/ZrO2 prepared by impregnation of CeO2 on Pt/ZrO2 and the catalyst showed highest stability.  相似文献   

14.
J.D.A. Bellido 《Fuel》2009,88(9):1673-1034
ZrO2, γ-Al2O3 and ZrO2/γ-Al2O3-supported copper catalysts have been prepared, each with three different copper loads (1, 2 and 5 wt%), by the impregnation method. The catalysts were characterized by nitrogen adsorption (BET), X-ray diffraction (XRD), temperature programmed reduction (TPR) with H2, Raman spectroscopy and electronic paramagnetic resonance (EPR). The reduction of NO by CO was studied in a fixed-bed reactor packed with these catalysts and fed with a mixture of 1% CO and 1% NO in helium. The catalyst with 5 wt% copper supported on the ZrO2/γ-Al2O3 matrix achieved 80% reduction of NO. Approximately the same rate of conversion was obtained on the catalyst with 2 wt% copper on ZrO2. Characterization of these catalysts indicated that the active copper species for the reduction of NO are those in direct contact with the oxygen vacancies found in ZrO2.  相似文献   

15.
Autothermal reforming of methanol for hydrogen production was investigated over ZnO–ZnCr2O4 supported on a series of metal oxides (Al2O3, CeO2, ZrO2 and CeO2–ZrO2). CeO2–ZrO2 mixed oxides with Ce /Zr molar ratio of 4/1 was found to be the optimal support which showed significant effect on the catalytic activity and selectivity. The ZnO–ZnCr2O4/CeO2–ZrO2 and ZnO–ZnCr2O4 catalysts were characterized by XRD, TEM, H2-TPR and XPS. The results show that CeO2–ZrO2 mixed oxides have significant effect on the catalytic performance and the supported catalyst shows more uniform temperature distribution in the catalyst bed which was mainly due to its reasonable redox properties.  相似文献   

16.
The aim of the present work is to study the selective reduction of NOx from natural gas sources. The unburned methane can be used as reductant. Another reductant such as hydrogen can be created in situ, using a microreformer. The results suggest that the NOx are reduced by H2 at low temperature, when methane is not activated and at higher temperature the methane is then the main reductant. However, the catalytic behaviour depends on the metal precursor and the catalyst treatment. The most prominent result is obtained on the palladium catalyst prepared from Pd(NH3)4(NO3)2 precursor. Comparing the reduction and the calcination step in the course of catalyst preparation, one can conclude that calcination lead to the higher activity in deNOx, since reduced catalysts are oxidized during the deNOx process.  相似文献   

17.
CO2 reforming of methane was studied over modified Ni/Al2O3 catalysts. The metal modifiers were Co, Cu, Zr, Mn, Mo, Ti, Ag and Sn. Relative to unmodified Ni/Al2O3, catalysts modified with Co, Cu and Zr showed slightly improved activity, while other promoters reduced the activity of CO2 reforming. Mn-promoted catalyst showed a remarkable reduction in coke deposition, while entailing only a small reduction in catalytic activity compared to unmodified catalyst. The catalysts prepared at high calcination temperatures showed higher activity than those prepared at low calcination temperature. The Mn-promoted catalyst showed very low coke deposition even in the absence of diluent gas and the activity changed only slightly during 100 h operation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
This study reports the potential interest of LaCoO3 in the catalytic decomposition of N2O from nitric acid plants. Typically, the exhaust gas contains NO, water and O2 which usually induce strong inhibiting effects depending on the surface properties of the solids particularly the surface mobility of oxygen from LaCoO3. Different preparation methods have been implemented, involving citrate route, reactive grinding and the use of templates, which lead to different structural and textural properties examined by X-ray diffraction, transmission electron microscopy and N2 physisorption. EDX analysis and XPS measurements also revealed that different surface composition may alter subsequent interactions between the surface and the reactants and related catalytic performances. LaCoO3 prepared by reactive grinding was found to be the most active catalyst due to a high specific surface area but the presence of Fe and Zn impurities inherent to the preparation method were suggested to interfere on the catalytic performances.  相似文献   

19.
The selective catalytic reduction (SCR) of NO by decane under an oxidising atmosphere has been carried out on Cu/ZrO2 and Cu/ZrO2(SO 4 2– ). Zirconia-supported Cu catalysts were prepared by ligand exchange with Cu acetylacetonate followed by calcination at 773 K. The solids obtained were characterised by temperature programmed reduction (TPR) by hydrogen and temperature programmed desorption (TPD) of NO. Cu/ZrO2 is active and selective in the reduction of NO by decane at low temperature (< 600 K) but oxidises NO to NO2 between 640 and 770 K. By contrast, whatever the temperature, a total selectivity to nitrogen is obtained with Cu/ZrO2(SO 4 2– ). About 40% NO conversion to N2 is observed with GHSV of 70 000 h–1. The promoting effect of sulfate is attributed to the large increase of acidity and the strong interaction between copper and sulfur species which is evidenced by TPD of NO and TPR by H2.  相似文献   

20.
Copper-based catalysts modified with aluminum precursors having different morphologies for methanol synthesis were prepared and the effect of the addition of aluminum emulsion on the characteristics of the catalyst was studied by using X-ray diffraction (XRD), temperature-programmed reduction (TPR) and differential thermal gravity (DTG). The experiment results show that the copper-based catalyst prepared by mixing a Cu-Zn precipitate with an amorphous aluminum emulsion prepared in advance by precipitating an aluminum salt with ammonia exhibits higher specific surface area and catalytic performance for methanol synthesis from synthesis gas. The catalysts thus prepared were found to have more (Cu,Zn)2CO3(OH)2 phase, from which more Cu/Zn sosoloid was produced during calcination. More sosoloid phase produced and stronger synergy between Cu and ZnO were verified to enhance the activity of the catalyst for methanol synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号