首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EffectofMicrostructureonTensilePropertiesofTiAlBasedAlloyPuZhongjie;ShiJiandong;ZouDunxu;ZhongZengyongAbstract:Themicrostruct...  相似文献   

2.
The microstructure and tensile properties of the extruded Mg-Zn-Zr-RE alloy bars are studied.Theextruded bar without previous homogenization has the highest tensile strength,whereas the tensile strength of theextruded bar previously homogenized at 400℃ or 380℃ is lower.During long time homogenization,the trans-formation of rare earth compounds Mg_3REZn_6(Z phase)and Mg_3RE_2Zn_3(W phase)into Mg_(41)RE_5 andMg Zn phases occurr and the MgZn phase grow up.In addition,the dynamic recrystallization takes place in sub-sequent extrusion that caused decrease of the tensile strength.  相似文献   

3.
Single-pass friction stir processing (FSP) was used to increase the mechanical properties of a cast Mg-Zn-Zr-rare earth (RE) alloy, Elektron 21. A fine grain size was achieved through intense plastic deformation and the control of heat input during processing. The effects of processing and heat treatment on the mechanical and microstructural properties were evaluated. An aging treatment of 16 hours at 200 °C resulted in a 0.2 pct proof stress of 275 MPa in the FSP material, a 61 pct improvement over the cast + T6 condition.  相似文献   

4.
5.
By means of optical microscope, scanning electron microscope, X-ray diffraction, energy dispersive spectrometer, Rockwell and Vickers hardness tester, and wear tester, the microstructure and properties of Fe–10Cr–1B–4Al alloy quenched in different temperature has been studied. The results show that the microstructure of as-cast Fe–10Cr–1B–4Al are composed of pearlite, ferrite and the eutectic borocarbide which shows a network distribution along grain boundaries. The eutectic borocarbides are composed of M7(C, B)3, M2(B, C) and M23(C, B)6. As the quenching temperature increases, the network structure of eutectic borocarbide breaks, but the type of eutectic borocarbide has no obvious change, and the matrix structure changes gradually from ferrite to pearlite. As the quenching temperature increases, the macro-hardness and the matrix micro-hardness of Fe–10Cr–1B–4Al alloy increases gradually. The macro-hardness and matrix micro-hardness of alloy reach the highest value of 45.7 HRC and 388.1 HV, respectively when the quenching temperature is 1150 °C. The hardness of alloy decreases slightly when the quenching temperature is too high. While quenching at 1150 °C, the alloy has the highest wear resistance and good comprehensive properties.  相似文献   

6.
EfectofZirconiumonTensileProperty,MicrostructureandFractureBehaviourofCastNi3AlBasedAloyYeWujun,FengDi,HanGuangwei,LuoHeli①A...  相似文献   

7.
Bayesian neural networks have been developed, which relate composition, microstructure, and tensile properties of the alloy TIMETAL 6-4 (nominal composition: Ti-6Al-4V (wt pct) after thermomechanical processing (TMP) in the two-phase (α + β)-phase field. The developed networks are able to make interpolative predictions of properties within the ranges of composition and microstructural features that are in the population of the database used for training and testing of the networks. In addition, the neural networks have been used to conduct virtual experiments which permit the functional dependencies of properties on composition and microstructural features to be determined. In this way, it is shown that in the microstructural condition resulting from TMP in the two-phase (α + β) phase field, the most significant contribution to strength is from solid solution strengthening, with microstructural features apparently influencing the balance of a number of properties.  相似文献   

8.
9.
This research primarily focuses on improving the strength of Al 5083 alloy by both the ECAP and Cryo ECAP methodology. Equal Channel Angular Pressing (ECAP) is one of the best technologies that enable the direct transformation of conventional macro grained metals into sub-micron, ultra-fine and nano grained materials. Fine grain size increases the strength and the fracture toughness of the material and provides the potential for super plastic deformation at moderate temperatures and at high strain rates. The microstructure evolution in Al 5083, subjected to Room Temperature ECAP and Cryo ECAP were analysed. ECAP was carried out using an optimized die with Channel angle ‘?’ = 90°and corner angle ‘Ψ’ = 20° through processing route A and C up to four passes. The results were thoroughly studied using TEM, SEM, and optical microscopic images. Initially the annealed sample had the grain size of 80 µm with the equi-axed grains. In Room Temperature, the hardness values and the mechanical strength were found to be increased from 88 to 410 HV and 306 to 453 MPa after four passes in route A and in route C the strength increased from 390 to 416 MPa after four ECAP passes. Moreover, in Cryo Condition, the sample was processed up to four ECAP passes at route A and route C. The hardness of 153 HV was obtained after four passes in route C and 164 HV obtained after four passes on route A. Additionally, fracture behaviour using SEM, grain size using TEM and crystallite size by X-ray diffraction studies were analyzed. It was observed that the Cryo ECAP showed marginal improvements in mechanical properties relative to the RT ECAP in case of Al 5083.  相似文献   

10.
The present work describes a new route for the preparation of Cu–Al–Ni alloy strips via spray atomization and deposition route. The route consists of atomizing liquid Cu–Al–Ni alloy with a jet of argon gas in a closed chamber, at a pressure of 1 MPa. The semi-solid Cu–Al–Ni droplets are subsequently collected on the steel substrate placed vertically below the liquid metal stream in the atomization chamber to form a three-dimensional preform. The deposit produced on the substrate contains ~?5% porosity. The microstructural details of the spray deposited Cu–Al–Ni strips explains particularly the presence of porosity, formation of splats during the flight of spray casting and the associated microstructural evolution in Cu–Al–Ni spray deposit are explained.  相似文献   

11.
12.
In this study, the effects of Co content on the crystal structure, transformation temperatures and microstructure of Cu–Al–Co shape memory alloy system were investigated. It was found that Cu–Al–Co alloy system has also 18R type martensitic structure, which is commonly observed in copper-based systems. The transformation temperatures were found to be higher than 250 °C and they do not show a linear increase or decrease with Co content. The microstructural examination revealed the presence of martensite phase and precipitates. It was realized that the size of precipitate increases with increasing Co content. It can be stated that the hardness increased with increasing Co content. All these results point out that increasing Co content increases the strength of Cu–Al–Co shape memory alloy system.  相似文献   

13.
Heat flux transients were estimated during unidirectional downward solidification of Al?C22% Si alloy against copper, die steel and stainless steel chills. The chill instrumented with thermocouples was brought into contact with the liquid metal so as to avoid the effect of convection associated with the pouring of liquid metal. Heat flux transients were estimated by solving the inverse heat conduction problem. Higher thermal conductivity of chill material resulted in increased peak heat flux at the metal/chill interface. Peak heat flux decreased when 100???m thick alumina coating was applied on the chill surface. The lower thermal conductivity of alumina based coating and the presence of additional thermal resistance decreases the interfacial heat transfer. For uncoated chills, the ratio of the surface roughness (Ra) of the casting to chill decreased from 6.5 to 0.5 with decrease in the thermal conductivity of the chill material. However when coating was applied on the chill, the surface roughness ratio was nearly constant at about 0.2 for all chill materials. The measured roughness data was used in a sum surface roughness model to estimate the heat transfer coefficient. The results of the model are in reasonable agreement with experimentally determined heat-transfer coefficients for coated chills.  相似文献   

14.
Metallurgical and Materials Transactions A - The low-carbon bainitic–martensitic steel added with microalloying elements was designed, and samples with different cooling rates were produced...  相似文献   

15.
Low-thermal-expansion alloys play a crucial role in high-precision instruments and devices. Simultaneously improving mechanical performance and keeping or even decreasing low thermal expansion behavior are urgently required for their industrial application. Herein, a new attempt to treat Fe–36Ni Invar alloy by adding trace magnesium (Mg) in a concentration ranging from 0 wt% to 0.0030 wt% (similarly hereinafter) is conducted. The introduction of Mg results in grain refinement and an increase in the volume fraction of the annealing twins. Compared with the Mg-free sample, the coefficient of thermal expansion (CTE) of 0.0030% Mg alloy is significantly decreased by more than 20%, which is mainly related to lattice distortion and matrix purification. The yield strength of 0.0030% Mg alloy improves by 10% with respect to Mg-free alloy, because of grain boundary strengthening and solid-solution strengthening. The study may lay the basis for a better understanding of the application of Mg in low-thermal-expansion alloys.  相似文献   

16.
17.
18.
ZA-27 alloy is a lightest alloy which offers excellent bearing and mechanical properties in automobile and industrial applications. In this study, the MoS2 particles with 0.5, 1 and 1.5 (wt%) weight percentages were reinforced in ZA-27 alloy to form composites, which were fabricated by using ultrasonic assisted stir casting method. The ZA-27/MoS2 composite specimens were examined for chemical composition with the aid of XRD technique and EDS. Microstructure analysis of the ZA-27/MoS2 composites was studied using SEM. Tests were conducted for mechanical properties such as tensile strength and hardness on ZA-27/MoS2 composites samples as per ASTM standards. Dry sliding wear behavior of the composites was tested at various operating conditions by using pin-on-disc apparatus. Microstructural images of the ZA-27 composites reveal that there is a uniform dispersion of the MoS2 particles in the base material. From the results it is observed that the mechanical properties increases with ZA-27 reinforced with 0.5 wt% MoS2 composite and further decreases with increase in the filler content. The enhanced wear resistance is observed in ZA-27 reinforced MoS2 composites as compared to the unreinforced alloy. The wear rate of the ZA-27 composites decreases with the increase in filler content, further the worn surfaces as examined using SEM reveals the wear mechanism explaining the improved wear resistance of the particulate composites.  相似文献   

19.
20.
The microstructure and mechanical properties of Al–10Si–5Cu cast alloys with micro-addition of alloying elements (V, Cr and Ni) were studied before and after strontium addition. Samples were examined using the X-Ray diffraction, the optical microscope, the scanning electron microscope and the energy dispersive spectrometer. The results indicated that the α-Al matrix, eutectic Si phase and Al2Cu phase were the main constituent phases of Al–10Si–5Cu alloys before or after strontium addition. Strontium addition affected the refining of the α-Al grains and transforming the configuration of interdendritic phases. The un-modified alloy showed a brittle nature because of existing brittle and aggregated AlSiMnFe phases. Contributing to the alteration of microstructure in strontium modified alloy, the strength and elongation of the alloy were improved. In addition, the fracture mechanism and crack propagation process were investigated in both the alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号