首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
徐士鸣  张莉 《太阳能学报》2007,28(5):457-463
对采用氨水溶液的变质量能量转换及储存系统的工作原理、工作循环和流程进行介绍。由于蓄能系统的能量转换过程是一个与时间有关的动态过程,常规的稳态制冷/热泵循环热力计算方法已不再适用,需给出一种新的动态热力计算方法。通过数值模拟来了解先进蓄能系统的工作特性,为进一步研究、开发该蓄能系统奠定理论基础。  相似文献   

2.
董旭  张永贵 《节能技术》2012,30(6):557-560
介绍了一种将太阳能相变蓄热技术应用于两级吸收式制冷的新型空调系统,简要分析了该系统的装置结构、工作原理和使用优点。对相变蓄热装置放热过程中放热盘管出水温度随放热时间的变化关系进行了实验测量,并对两级吸收式制冷系统效率进行了分析。通过研究可知,该太阳能空调系统有效解决了以往系统不稳定性和间断性问题;太阳能相变蓄热装置具有体积小、蓄热量大、放热速率大、连续放热温度均匀、便于控制热源加热温度等特点,适合储存太阳能并为吸收式制冷系统提供加热热源。综合考虑系统设备简单,加工要求低的制造特点,所以吸收式制冷以太阳能等低品位热源驱动有着良好的发展前景。  相似文献   

3.
Y.H. Kuang  R.Z. Wang   《Solar Energy》2006,80(7):795-803
This paper reports on the long-term performance of a direct-expansion solar assisted heat pump (DX-SAHP) system for domestic use, which can offer space heating in winter, air conditioning in summer and hot water during the whole year. The system employs a bare flat-plate collector array with a surface area of 10.5 m2, a variable speed compressor, a storage tank with a total volume of 1 m3 and radiant floor heating unit. The performance under different operation modes is presented and analyzed in detail. For space-heating-only mode, the daily-averaged heat pump COP varied from 2.6 to 3.3, while the system COP ranged from 2.1 to 2.7. For water-heating-only mode, the DX-SAHP system could supply 200 l or 1000 l hot water daily, with the final temperature of about 50 °C, under various weather conditions in Shanghai, China. For space-cooling-only mode, the compressor operates only at night to take advantage of a utility’s off-peak electrical rates by chilling water in the thermal storage tank for the daytime air-conditioning. It shows that, the multi-functional DX-SAHP system could guarantee a long-term operation under very different weather conditions and relatively low running cost for a whole year.  相似文献   

4.
This research work studies an ice thermal energy storage having an injection of R12 refrigerant into the water to exchange heat directly. The water temperature decreases to the freezing point and ice is formed. The ice is used for creating chilled water for an air-conditioning purpose. The system consists of a compressor, a condenser, an expansion valve and a direct contact evaporator. This system has a capacity of approximately 2 tons of refrigeration. The system simulation created from the mathematical model of each component has been carried out. It was found that the performance of the system depends on two factors, the compressor speed and the mass flow rate of the refrigerant. The suitable conditions are 8–10 rps for the compressor speed and 0.04–0.06 kgs−1 for the mass flow rate. The coefficient of performance is about 3·4–3·6 which is higher than that of the conventional system. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents the performance results for a sensible heat storage system. The system under study operates as an air source heat pump which stores the compressor heat of rejection as domestic hot water or hot water in a storage tank that can be used as a heat source for providing building heating. Although measurements were made to quantify space cooling, space heating, and domestic water heating, this paper emphasizes the space heating performance of the unit. The heat storage system was tested for different indoor and outdoor conditions to determine parameters such as heating charge rate, compressor power, and coefficient of performance (COP). The thermal storage tank was able to store a full charge of heat. The rate of increase of storage tank temperature increased with outdoor temperature. The heating rate during a charge test, best shown by the normalized rate plots, increased with evaporating temperature due to the increasing mass flow rate and refrigerant density. At higher indoor temperature during the discharge tests, the rate of decrease of storage tank temperature was slower. Also, the discharge heating rate decreased with time since the thermal storage tank temperature decreased as less thermal energy became available for use. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
X.Q. Kong  D. Zhang  Y. Li  Q.M. Yang 《Energy》2011,36(12):6830-6838
A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m2, an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system.  相似文献   

7.
空气源热泵空调系统节能分析   总被引:8,自引:1,他引:8  
节能的分析及优化已不仅仅是能的量的问题,而是能的质与量的综合评价的问题。采用yong分析方法得出空气源热泵空调系统的能耗分布,明确系统yong损失较大的环节。从yong分析得知:压缩机的yong损失占机组能耗的20.5%,冷凝器的yong损失接近总能耗的30%。由此提出了空气源热泵空调系统的节能措施,即应该选用高效率的压缩机,采用强化传热措施,提高传热系数,减小传热温差,同时还应注意改善热泵机组的周围环境,使系统yong损失最小,yong效率最大,实现空气源热泵空调系统的节能优化.  相似文献   

8.
The performance of a photovoltaic solar assisted heat pump (PV-SAHP) with variable-frequency compressor is reported in this paper. The system is a direct integration of photovoltaic/thermal solar collectors and heat pump. The solar collectors extract the required thermal energy from the heat pump and at the same time, the cooling effect of the refrigerant lowers the working temperature of the solar cells. So this combined system has a relatively high thermal performance with an improved photovoltaic efficiency. To adapt to the continuously changing solar radiation and ambient temperature conditions, the refrigerant mass flow rate should match the heat gain at the evaporator accordingly. A variable-frequency compressor and an electricity-operated expansion valve were used in the proposed system. Mathematical models were developed to evaluate the energy performance of the combined system based on the weather conditions of Tibet. The simulation results indicated that on a typical sunny winter day with light breeze, the average COP could reach 6.01, and the average electricity efficiency, thermal efficiency and overall efficiency were 0.135, 0.479 and 0.625 respectively.  相似文献   

9.
The long-term thermal performance of a direct-expansion, solar-assisted heat pump is determined from the transient simulation of the system. The system employs a bare collector that also acts as the heat pump evaporator. Of particular interest in this study is the configuration in which the compressor and the collector area are properly matched from the long-term thermal performance point of view. This matching is achieved through multistep as well as two-step compressor capacity modulation. In addition to examining the effects of compressor capacity modulation, the effects of various system parameters such as collector area, storage volume, load temperature, wind speed, collector slope, and refrigerant properties are also studied in detail.Monthly averaged thermal performance parameters such as the heat pump system coefficient of performance are determined by executing a computer simulation program that uses the typical meterological year (TMY) solar data for Norfolk, Virginia. Results indicate that the system performance is governed strongly by collector area, compressor RPM, load temperature, and refrigerant properties. The remaining parameters have only weak influence on the long-term system performance of direct expansion solar-assisted heat pump (SAHP) system considered in this study.  相似文献   

10.
Analytical and experimental studies were performed on a direct‐expansion solar‐assisted heat pump (DX‐SAHP) water heating system, in which a 2 m2 bare flat collector acts as a source as well as an evaporator for the refrigerant. A simulation model was developed to predict the long‐term thermal performance of the system approximately. The monthly averaged COP was found to vary between 4 and 6, while the collector efficiency ranged from 40 to 60%. The simulated results were used to obtain an optimum design of the system and to determinate a proper strategy for system operating control. The effect of various parameters, including solar insolation, ambient temperature, collector area, storage volume and speed of compressor, had been investigated on the thermal performance of the DX‐SAHP system, and the results had indicated that the system performance is governed strongly by the change of solar insolation, collector area and speed of compressor. The experimental results obtained under winter climate conditions were shown to agree reasonably with the computer simulation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
《Applied Thermal Engineering》2001,21(10):1049-1065
Analytical and experimental studies were performed on a solar assisted heat pump water heating system, where unglazed, flat plate solar collectors acted as an evaporator for the refrigerant R-134a. The system was designed and fabricated locally, and operated under meteorological conditions of Singapore. The results obtained from simulation are used for the optimum design of the system and enable determination of compressor work, solar fraction and auxiliary energy required for a particular application. To ensure proper matching between the collector/evaporator load and compressor capacity, a variable speed compressor was used. Due to high ambient temperature in Singapore, evaporator can be operated at a higher temperature, without exceeding the desired design pressure limit of the compressor, resulting in an improved thermal performance of the system. Results show that, when water temperature in the condenser tank increases with time, the condensing temperature, also, increases, and the corresponding COP and collector efficiency values decline. Average values of COP ranged from about 4 to 9 and solar collector efficiency was found to vary between 40% and 75% for water temperatures in the condenser tank varying between 30°C and 50°C. A simulation model has been developed to analyse the thermal performance of the system. A series of numerical experiments have been performed to identify important variables. These results are compared with experimental values and a good agreement between predicted and experimental results has been found. Results indicate that the performance of the system is influenced significantly by collector area, speed of the compressor, and solar irradiation. An economic analysis indicates a minimum payback period of about two years for the system.  相似文献   

12.
提出了可全年供应空调和热水需要的变容量家庭能源中心系统,并提出单独制热水模式下的性能系数计算方法。通过对该模式瞬时动态特性的研究,指出变容量压缩机可以有效地保证机组的安全可靠运行。实验研究了单独制热水模式在不同环境温度、不同压缩机负荷条件下的性能。结果表明,在同一压缩机负荷条件下,热水性能系数均随环境温度的升高而升高,与传统热泵热水器的变化趋势相同。而压缩机负荷变化对机组热水性能系数的影响在不同的环境温度下呈现不同的规律,因此,可根据不同的环境温度优化控制压缩机负荷,以提高制热水效率,节约能源。  相似文献   

13.
提出了一种基于溶液除湿的地源热泵毛细管顶板复合空调系统。该系统采用了溶液除湿承担潜热负荷,地源热泵制取的高温冷水承担显热负荷的方式,达到了节省高品位电能、减轻大气污染、减少运行费用的效果,与传统的空调系统相比具有节能、环保、高舒适性的特点。  相似文献   

14.
针对蓄冰空调系统的工程应用,阐述系统工作原理及其适用性分析,选取河北省某办公建筑作为研究对象,按照此建筑用能特点以及当地电价结构,选择了100%、80%、60%、40%、20%五档部分负荷率对蓄冰空调系统与传统空调系统进行全年运行能耗及电费对比,分析结果表明:虽然蓄冰空调系统初投资偏高,但其年运行费用比传统空调系统节省电费32.4%,寿命期内年费用节省20.43%。  相似文献   

15.
Solar air conditioning is an important approach to satisfy the high demand for cooling given the global energy situation. The application of phase-change materials (PCMs) in a thermal storage system is a way to address temporary power problems of solar air-conditioning systems. This paper reviews the selection, strengthening, and application of PCMs and containers in latent thermal storage system for solar air-conditioning systems. The optimization of PCM container geometry is summarized and analyzed. The hybrid enhancement methods for PCMs and containers and the cost assessment of latent thermal storage system are discussed. The more effective heat transfer enhancement using PCMs was found to mainly involve micro-nano additives. Combinations of fins and nanoadditives, nanoparticles, and metal foam are the main hybrid strengthening method. However, the thermal storage effect of hybrid strengthening is not necessarily better than single strengthening. At the same time, the latent thermal storage unit has less application in the field of solar air-conditioning systems, especially regarding heat recovery, because of its cost and thermal storage time. The integration of latent thermal storage units and solar air-conditioning components, economic analysis of improvement technology, and quantitative studies on hybrid improvement are potential research directions in the future.  相似文献   

16.
数码涡旋与变频VRV中央空调系统性能比较   总被引:6,自引:0,他引:6  
本文主要分析比较了相对于传统中央空调而言变频VRV中央空调系统的节能优势,接着比较了数码涡旋VRV中央空调与变频VRV中央空调的一些特性,尤其是在节能方面,指出数码压缩性能相对变频是一个提高。  相似文献   

17.
The aim of this paper is to simulate the performance of an air source heat pump water heater using carbon dioxide (CO2) as a working fluid. The heat pump water heating system consists of a compressor, a gas cooler, an expansion device and an evaporator. The computer simulation model has been developed by using the heat transfer data and the thermodynamic properties of CO2. The effects on the heat pump performance by the operating parameters such as the compressor rotational speed, the inlet water temperature at the gas cooler, the inlet air temperature at the evaporator and the mass flow rate ratio of water to refrigerant were presented. For rated capacities of a 4 kW compressor with a 10 kW gas cooler and a 6 kW evaporator, the coefficient of performance is found to be between 2.0 and 3.0. The mass flow rate ratio of water and CO2 between 1.2 and 2.2 is the most suitable value for generating hot water temperature above 60°C at 15–25°C ambient air temperature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
分析了影响太阳能吸收式空调系统集热面积的因素;得出系统集热面积单耗的日逐时值;根据太阳能吸收式空调系统特点,提出了一种确定集热器集热面积的新方法,并以2级吸收式太阳能空调系统为例进行了详细阐述.分析结果表明,为减少集热面积,优化系统,须对太阳能空调系统增设蓄热装置.太阳能吸收式空调运行在8:00~18:00时,系统所需的最小集热面积单耗为1.085 m2/m2,其对应的蓄热器的容积单耗为0.036 3m3/m2,且随着太阳能空调运行时间的缩短,最小集热面积单耗减小,蓄热器容积单耗增加.  相似文献   

19.
地源热泵供暖空调的经济性   总被引:9,自引:1,他引:8  
李新国  赵军  朱强 《太阳能学报》2001,22(4):418-421
地源热泵是利用地表浅层土壤能量(地下水、土壤或地表水)作为冬季热泵热源供暖和夏季冷源进行空调的系统,地源温度全年相对稳定的特性使得地源热泵比传统空调系统运行效率要高,地源热泵是否具有经济竞争性仍是一个非常关键的问题,该文对地源热泵与传统的供暖空调系统进行经济性比较。首先将地源热泵与传统供暖方式,如燃煤、燃油和天然气锅炉进行供暖经济性的比较,再将地源热泵与常规电制冷空调方式进行空调经济性的比较,然后将地源热泵与锅炉加空调两种方式共四种方式共四种方案进行综合经济性的比较分析。  相似文献   

20.
We propose a model for the heating system of an ecological building whose main energy source is solar radiation. The most important component of the heating system is a vapour compression heat pump. Both the first law and the second law were used to analyse the heat pump operation. The state parameters and the process quantities were evaluated by using, as input, the building thermal load. The second law analysis emphasised that most of the exergy losses occur during compression and condensation. Preliminary results show that the photovoltaic array can provide all the energy required to drive the heat pump compressor, if an appropriate electrical energy storage system is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号