首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a magnetron sputtering system, the negative substrate bias voltage has been used as a basic process parameter to modify the deposition structure and properties of coatings. In this paper we report the effect of bias voltage ranging from −40 V to −90 V on nano-scaled CrN/TiN/CrN/AlN (CrTiAlN) multilayer coatings synthesized on a Mg alloy by a closed-field unbalanced magnetron sputtering ion plating system in a gas mixture of Ar + N2. The technological temperature and atomic concentration in the multilayer coatings were controlled by adjusting the current density of different metal magnetron targets and the plasma optical emission monitor. The composition, crystallographic structure, deposition model and friction coefficient of multilayer coatings were characterized by X-ray photoelectron spectrometry (XPS), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and ball-on-disc testing. The experimental results show that the deposition model and friction coefficient of nano-scaled CrTiAlN multilayer coatings were significantly affected by the negative bias voltage (Vb). The nitride species in multilayer coatings mainly involve CrN, AlN and TiN, and XRD analysis shows that the crystallographic structure was face-centered cubic. Under different bias voltage conditions, the multilayer coating composition shows a fluctuation, and the Al and Cr concentrations respond in the opposite sense to the bias voltage, attaining their greatest values at Vb = −70 V. The surface and cross-sectional morphology shows deposition model change from a columnar model into non-columnar model with the increase in negative bias voltage. The friction coefficient of the nano-scaled multilayer coatings at Vb = −55 V stabilize after 10 000 cycles.  相似文献   

2.
Enhancement of mechanical and tribological properties on AISI D3 steel surfaces coated with CrN/AlN multilayer systems deposited in various bilayer periods (Λ) via magnetron sputtering has been studied in this work exhaustively. The coatings were characterized in terms of structural, chemical, morphological, mechanical and tribological properties by X-ray diffraction (XRD), electron dispersive spectrograph, atomic force microscopy, scanning and transmission electron microscopy, nanoindentation, pin-on-disc and scratch tests. The failure mode mechanisms were observed via optical microscopy. Results from X-ray diffraction analysis revealed that the crystal structure of CrN/AlN multilayer coatings has a NaCl-type lattice structure and hexagonal structure (wurtzite-type) for CrN and AlN, respectively, i.e., made was non-isostructural multilayers. An enhancement of both hardness and elastic modulus up to 28 GPa and 280 GPa, respectively, was observed as the bilayer periods (Λ) in the coatings were decreased. The sample with a bilayer period (Λ) of 60 nm and bilayer number n  =  50 showed the lowest friction coefficient (∼0.18) and the highest critical load (43 N), corresponding to 2.2 and 1.6 times better than those values for the coating deposited with n = 1, respectively. The best behavior was obtained when the bilayer period (Λ) is 60 nm (n = 50), giving the highest hardness 28 GPa and elastic modulus of 280 GPa, the lowest friction coefficient (∼0.18) and the highest critical load of 43 N. These results indicate an enhancement of mechanical, tribological and adhesion properties, comparing to the CrN/AlN multilayer systems with 1 bilayer at 28%, 21%, 40%, and 30%, respectively. This enhancement in hardness and toughness for multilayer coatings could be attributed to the different mechanisms for layer formation with nanometric thickness such as the Hall–Petch effect and the number of interfaces that act as obstacles for the crack deflection and dissipation of crack energy.  相似文献   

3.
SIMS and GDMS depth profile analysis of hard coatings   总被引:1,自引:0,他引:1  
Rapid development in hard coating technology calls for simple construction depth profile analysers. Here we present results of depth profile analysis of a set of Ar arc plasma deposited TiN, CrN layers. The results are obtained with the use of recently constructed simple glow discharge mass spectrometer (GDMS) and compared with secondary ion mass spectrometer (SIMS). In SIMS (SAJW-05 model) we apply 5 keV Ar+ ion beam of about 100 μm in diameter. Digitally controlled spiral scanning of primary ion beam is performed over 1.6 mm2 area. Secondary ions are extracted from the central part due to an “electronic gate” and analysed by quadrupole mass spectrometer QMA-410 Balzers (16 mm rods).GDMS analyses are performed on SMWJ-01 glow discharge prototype spectrometer. To supply discharge in 1 hPa argon we use 1.5 kV DC voltage. The analysed sample works as a cathode in a discharge cell. Area of the analysis is ∼4 mm2 due to the use of secondary cathode—high purity tantalum diaphragm. Sputtered atoms are ionised, next extracted into the analytical chamber and finally analysed by the quadrupole mass analyser SRS-200 (6 mm rods).The results show that the use of simple construction GDMS analyser allows obtaining similar or even slightly better depth resolution than it can be obtained in the SIMS spectrometer. Application of glow discharge analysis opens new possibilities in direct quantitative depth profile analysis of hard coatings.  相似文献   

4.
CrN/AlN superlattice coatings with different CrN layer thicknesses were prepared using a pulsed closed field unbalanced magnetron sputtering system. A decrease in the bilayer period from 12.4 to 3.0 nm and simultaneously an increase in the Al/(Cr + Al) ratio from 19.1 to 68.7 at.% were obtained in the CrN/AlN coatings when the Cr target power was decreased from 1200 to 200 W. The bilayer period and the structure of the coatings were characterized by means of low angle and high angle X-ray diffraction and transmission electron microscopy. The mechanical and tribological properties of the coatings were studied using the nanoindentation and ball-on-disc wear tests. It was found that CrN/AlN superlattice coatings synthesized in the current study exhibited a single phase face-centered cubic structure with well defined interfaces between CrN and AlN nanolayers. Decreases in the residual stress and the lattice parameter were identified with a decrease in the CrN layer thickness. The hardness of the coatings increased with a decrease in the bilayer period and the CrN layer thickness, and reached the highest value of 42 GPa at a bilayer period of 4.1 nm (CrN layer thickness of 1.5 nm, AlN layer thickness of 2.5 nm) and an Al/(Cr + Al) ratio of 59.3 at.% in the coatings. A low coefficient of friction of 0.35 and correspondingly low wear rate of 7 × 10− 7 mm3N− 1m− 1 were also identified in this optimized CrN/AlN coating when sliding against a WC-6%Co ball.  相似文献   

5.
Nanoindentation study of magnetron-sputtered CrN and CrSiN coatings   总被引:1,自引:0,他引:1  
CrN and CrSiN coatings were deposited on stainless steel substrate by reactive magnetron sputtering. The coatings were characterized for phases, chemical composition, microstructure, and mechanical properties by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM)/energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), and nanoindentation technique, respectively. The cubic phase was the only phase observed in both the coatings as observed in XRD results. A dense morphology was observed in these coatings deposited with high nitrogen and Si contents, 50:50 and 18.65 at.%, respectively. Nanoindentation measurement of CrN coatings, with Ar + N2 proportions of 60:40, showed maximum hardness (H) and modulus (E) of 21 ± 0.85 GPa and 276 ± 13 GPa, respectively. The CrN coatings deposited in pure N2 atmosphere showed H and E values of 27 ± 1.62 and 241 ± 10 GPa, respectively. The measured H and E values of CrSiN coatings were found to be 28 ± 1.40 GPa and 246 ± 10 GPa, respectively. The improved hardness in both the coatings was attributed mainly to a reduction in crystallite size, decrease in surface roughness, and dense morphology. The incorporation of Si into the CrN coatings has improved both hardness and Young’s modulus.  相似文献   

6.
CrN/a-CNx nanolayered coatings have been deposited by DC reactive magnetron sputtering of pure Cr and graphite targets. The total thickness is 1 μm and that of a-CNx layers is kept constant at 3.5 nm. The period (bilayer thickness) is in the range 8-16 nm. CrN and a-CNx layers are crystalline and amorphous respectively. The decrease of CrN layers’ thickness (decrease of period) in the stack leads to refinement of CrN microstructure associated with (200) preferred orientation. The hardness of nanolayered films is independent of the period’s thickness, while internal compressive stress, which remains between that of each elementary layer, follows an evolution close to that of the law of mixtures. The best tribological behaviours are reached for a periods’ thickness of 8 nm.  相似文献   

7.
Carbon coatings applied on optical fibers via chemical vapor deposition were characterized by a resistance technique, focused ion beam/scanning electron microscopy (FIB/SEM), and reflectance Fourier-transform infrared spectroscopy (FTIR). The resistance technique measures the thickness of carbon film by measuring the resistance over a section of optical fiber, and backing out the film thickness. The FIB/SEM system was used to remove a cross section of the optical fiber and carbon coating and using a scanning transmission electron detector the thickness was measured. The FTIR approach is based on the fact that the wavelength of the light in the mid-infrared region (~ 10 μm) is significantly larger than the typical thickness of the carbon coatings (< 0.1 μm) which makes the coating “semi-transparent” to the infrared light. Carbon coating deposition results in significant transformations of the band profiles of silica in the reflectance spectra that were found to correlate with the carbon coating thickness for films ranging from 0.7 nm to 54.6 nm. The observed transformations of the reflectance spectra were explained within the framework of Fresnel reflection of light from a dual-layer sample. The advantage of this approach is a much higher spatial resolution in comparison with many other known methods and can be performed more quickly than many direct measurement techniques.  相似文献   

8.
TiAlN/CrN nanoscale multi-layered coatings have been deposited using cathodic arc evaporation system. The coatings were deposited using one Ti50Al50 alloy target and one Cr target with a fixed target power in all the processes, while the bi-layer thickness was varied by various rotation speeds of the substrate holder in order to produce different nanoscale multi-layered period thickness. The texture structure, residual stress, and nanoscale multi-layer period thickness of the coatings were determined by X-ray diffraction using both Bragg-Brentano and glancing angle parallel beam geometries. Hardness and adhesion strength of the coatings were measured by Nano-indentation and Rockwell-C indentation methods, respectively. It has been found that the structural and mechanical properties of the films correlate with nano-scaled bi-layer thickness and crystalline texture. The maximum hardness of nano-scaled TiAlN/CrN multi-layered coatings was approximately 36 GPa with highest residual stress of −6.2 GPa, for a bi-layer thickness ranging from 6 to 12 nm.  相似文献   

9.
Li-Bin Shi  Cui-Yan Xu 《Vacuum》2008,83(2):381-385
We calculate stress in YBa2Cu3O7−x/MgO (YBCO/MgO) and YBa2Cu3O7−x/LaAlO3 (YBCO/LAO) by XRD of the sample, σ1 = −1.2 GPa and σ2 = −1.4 GPa, respectively, which shows that the stress in YBCO/LAO is stronger than that in YBCO/MgO. In addition, microwave response of the two pieces of thin films is also investigated by microstrip resonator technique. Surface resistance and penetration depth of the films are obtained by analyzing S21 resonant curves of the microstrip resonator, the penetration depth λ0 = 280 nm for YBCO/MgO and λ0 = 265 nm for YBCO/LAO, and surface resistance Rs = 0.376 mΩ for YBCO/MgO and Rs = 2.660 mΩ for YBCO/LAO at 78 K, 10 GHz. The results show stronger stress in YBCO/LAO which lead to a larger microwave surface resistance than YBCO/MgO's. Some rational explanations are also analyzed and discussed in the paper.  相似文献   

10.
Magnesium apatite coatings on Ti6Al4V substrate were synthesized by the sol-gel dip-coating method. Magnesium was incorporated in the coating according to the formula (Ca10−xMgx)(PO4)6(OH)2, where x = 0, 0.50, 1.00, 1.50 and 2.00. Approximately 2-μm-thick apatite coatings were derived after five cycles of dip-drawing-drying-firing process. A transitional region (Rt) was formed between substrate and coating during the firing process. Adhesion tests show that the adhesion strength between substrate and apatite coating is enhanced by the incorporation of magnesium in the coating. The quantity of magnesium incorporated appeared to correspond to the Mg-Ti-O chemical bonds formed in the transitional region, which contributed to the adhesion strength of the coatings.  相似文献   

11.
Sliding, abrasive, and impact wear tests were performed on chromium nitride (CrN)-based coatings deposited on mirror-polished M2 high speed steel substrates by the novel high power impulse magnetron sputtering (HIPIMS) utilising high peak cathode powers densities of 3000 W cm−2. The coatings were compared to single layer CrN and multilayer superlattice CrN/NbN coatings deposited by the arc bond sputtering (ABS) technique designed to improve the coating substrate adhesion by a combined steered cathodic arc/unbalanced magnetron (UBM) sputtering process. The substrates were metal ion etched using non-reactive HIPIMS or steered cathodic arc at a substrate bias voltage of −1200 V. Subsequently a 2- to 3-μm thick CrN or CrN/NbN coating was deposited by reactive HIPIMS or UBM. No bias was used during the HIPIMS deposition, while the bias during UBM growth was in the range 75-100 V. The ion saturation current measured by a flat electrostatic probe reached values of 50 mA cm−2 peak for HIPIMS and 1 mA cm−2 continuous during UBM deposition. The microstructure of the HIPIMS coatings observed by transmission electron microscopy was fully dense in contrast to the voided columnar structure observed in conventional UBM sputtered CrN and CrN/NbN. The sliding wear coefficients of the HIPIMS CrN films of 2.3×10−16 m3 N−1 m−1 were lower by a factor of 4 and the roughness of the wear track was significantly reduced compared to the UBM-deposited CrN. The abrasive wear coefficient of the HIPIMS coating was 2.2×10−13 m3 N−1 m−1 representing an improvement by a factor of 3 over UBM deposited CrN and a wear resistance comparable to that of the superlattice CrN/NbN. The adhesion of the HIPIMS deposited CrN was comparable to state-of-the-art ABS technology.  相似文献   

12.
Yi-Ying Li 《Thin solid films》2010,518(24):7527-7531
The CrN top layer and NiP interlayer were sequentially deposited to form a CrN/NiP composite coating through sputtering technique. The CrN/NiP coating systems deposited at 350 °C, 450 °C, and 550 °C, showed amorphous/nanocrystalline, nanocrystallize with precipitations, and fully crystallized microstructure respectively for the NiP interlayers. With the introduction of NiP interlayer, the coating assemblies exhibited superior corrosion characteristics than single CrN coatings. The amorphous NiP interlayer deposited at 350 °C revealed a lower corrosion current as compared to those with crystallized NiP layers owing to their structural defects in the alloy layer. With the combination of CrN and NiP layers the corrosion attach was retarded and a better corrosion resistance was found for the CrN/NiP composite coating.  相似文献   

13.
The microstructure and mechanical properties of detonation gun sprayed NiCrAlY + CeO2 alloy coatings deposited on superalloys were investigated. The morphologies of the coatings were characterized by using the techniques such as optical microscopy, X-ray diffraction and field emission scanning electron microscopy/energy-dispersive analysis. The coating depicts the formation of dendritic structure and the microstructural refinement in the coating was due to ceria. Average porosity on three substrates was less than 0.58% and surface roughness of the coatings was in the range of 6.17–6.94 μm. Average bond strength and microhardness of the coatings were found to be 58 MPa and 697–920 HV, respectively.  相似文献   

14.
High temperature fatigue (R=0) damage and deformation behaviors of SUS304 steel thermally sprayed with Al2O3/NiCr coating were investigated using an electronic speckle pattern interferometry (ESPI) method. Surface cracks and delamination occurred after 1×105 cycles test when σmax was 202 MPa at 873 K. The lengths and number of cracks and delamination largely decreased when σmax or temperature decreased to 115 MPa or 573 K, respectively. Strain values along cracks measured with the ESPI method were much larger than other areas due to crack opening under the tensile load. The positions of strain concentration zones on strain distribution figures by ESPI method were well corresponded to those of cracks on sprayed coatings. Strain values decreased largely where local delamination occurred.  相似文献   

15.
Cr/CrN/CrAlN, CrN/CrAlN and Cr/CrN thin layers were deposited by PVD (Physical Vapor Deposition). The multilayers were obtained from the combined deposition of different layers Cr, CrN and CrAlN thick films on on AISI4140 steel and silicon substrates at 200 °C, and evaluated with respect to fundamental properties such as structure and thermal properties. Cr, CrN and CrAlN single layers were also prepared for comparison purposes. The structural and morphological properties of PVD layers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with EDS + WDS microanalyses, stresses were determined by the Newton’s rings methods using the Stoney’s equation and surface hardening and hardness profiles were evaluated by micro hardness measurements. The XRD data and HRTEM showed that both the Cr/CrN, CrN/CrAlN and Cr/CrN/CrAlN multilayer coatings exhibited B1NaCl structure with a prominent reflection along (200) plane, and CrAlN sub-layer microstructures composed of nanocrystallites uniformly embedded in an amorphous matrix. The innovation of this work was to use the thickness of three different coating types to determine the thermal properties. Furthermore, an empirical equation was developed for the thermal properties variations with temperature of AISI4140 steel coated with different multilayer coatings. The thermal conductivity of CrAlN single layered was lower than the multilayer and the bulk material AISI4140. Moreover, the influences of structure and composition of the multilayer coatings on the thermal properties are discussed.The thermal conductivity of nanoscale thin film is remarkably lower than that of bulk materials because of its various size effects.  相似文献   

16.
Five different nanostructured, multilayer coatings (CrN/Cr)x8 with different thickness ratio of Cr and CrN layers were deposited by PAPVD (Plasma Assisted Physical Vapour Deposition) vacuum arc method on Ti6Al4V titanium alloy. The microstructure, chemical and phase composition of the CrN and Cr sub-layers were characterized by SEM with EDX and Cs-corrected dedicated STEM on cross-sections prepared by focus ion beam. Besides, hardness and Young's modulus of the (Cr/CrN)x8 coatings has been measured. The adhesion has been tested by scratch test method. The obtained (CrN/Cr) multilayer coatings, 5-6 μm in thickness, have homogeneous and nanocrystalline structure, free of pores and cracks. The microstructures of Cr and CrN layers consist of columnar grains below 100 nm in diameter. The hardness and Young's modulus of these coatings depend linearly on thickness ratio of Cr and CrN layers. The decrease of the thickness ratio Cr/CrN 0.81 to 0.15 results in the increase of hardness from 1275 HV to 1710 HV and Young's modulus from 260 GPa to 271 GPa.  相似文献   

17.
Nanolayered TiN/CrN multilayer coatings were deposited on silicon substrates using a reactive DC magnetron sputtering process at various modulation wavelengths (Λ), substrate biases (VB) and substrate temperatures (TS). X-ray diffraction (XRD), nanoindentation and atomic force microscopy (AFM) were used to characterize the coatings. The XRD confirmed the formation of superlattice structure at low modulation wavelengths. The maximum hardness of the TiN/CrN multilayers was 3800 kg/mm2 at Λ=80  Å, VB=−150 V and TS=400°C. Thermal stability of TiN, CrN and TiN/CrN multilayer coatings was studied by heating the coatings in air in the temperature range (TA) of 400-800°C. The XRD data revealed that TiN/CrN multilayers retained superlattice structure even up to 700°C and oxides were detected only after TA?750°C, whereas for single layer TiN and CrN coatings oxides were detected even at 550°C and 600°C, respectively. Nanoindentation measurements showed that TiN/CrN multilayers retained a hardness of 2800 kg/mm2 upon annealing at 700°C, and this decrease in the hardness was attributed to interdiffusion at the interfaces.  相似文献   

18.
Effects of substrate bias voltage and target sputtering power on the structural and tribological properties of carbon nitride (CNx) coatings are investigated. CNx coatings are fabricated by a hybrid coating process with the combination of radio frequency plasma enhanced chemical vapor deposition (RF PECVD) and DC magnetron sputtering at various substrate bias voltage and target sputtering power in the order of −400 V 200 W, −400 V 100 W, −800 V 200 W, and −800 V 100 W. The deposition rate, N/C atomic ratio, and hardness of CNx coatings as well as friction coefficient of CNx coating sliding against AISI 52100 pin in N2 gas stream decrease, while the residual stress of CNx coatings increases with the increase of substrate bias voltage and the decrease of target sputtering power. The highest hardness measured under single stiffness mode of 15.0 GPa and lowest residual stress of 3.7 GPa of CNx coatings are obtained at −400 V 200 W, whereas the lowest friction coefficient of 0.12 of CNx coatings is achieved at −800 V 100 W. Raman and XPS analysis suggest that sp3 carbon bonding decreases and sp2 carbon bonding increases with the variations in substrate bias voltage and target sputtering power. Optical images and Raman characterization of worn surfaces confirm that the friction behavior of CNx coatings is controlled by the directly sliding between CNx coating and steel pin. Therefore, the reduction of friction coefficient is attributed to the decrease of sp3 carbon bonding in the CNx coating. It is concluded that substrate bias voltage and target sputtering power are effective parameters for tailoring the structural and tribological properties of CNx coatings.  相似文献   

19.
Interfacial shear strength is one of the critical properties in bioceramic coatings on metal implants because it directly affects the success of implantation and long-term stability. In this study, shear strain lag method was employed to evaluate the interfacial shear strength of sol-gel derived fluoridated hydroxyapatite (FHA) coatings on Ti6Al4V substrates. The residual stresses were measured using the “wafer curvature method”. The resultant interfacial shear strength increased from pure HA’s ∼393-459 MPa as fluorine was increased to 1.96 at% and further increased to ∼572 MPa as fluorine increased to 3.29 at%. The residual stresses in the coating also decreased from pure HA’s ∼273-190 MPa and further to ∼137 MPa as fluorine composition in the coating increased. The reduction in the residual stress mainly comes from the reduction in the difference in coefficient of thermal expansion between the coating and the titanium alloy substrate.  相似文献   

20.
As a protective hard coating on glass molding dies, Cr-Ta coatings were fabricated on binderless tungsten carbide substrates with a Ti interlayer by RF magnetron sputtering. The nanocrystalline Cr-Ta coatings were deposited at 550 °C, which revealed one nanocrystalline phase for the Ta-rich coating and two nanocrystalline phases for the Cr-rich coating. Annealing treatment was conducted at 600 °C in a 12 ppm O2-N2 atmosphere to evaluate the coating performance in a realistic glass molding environment. Both Auger electron spectroscopy and X-ray photoelectron spectroscopy depth profiles verified the outward diffusion of Cr, which formed a protective coating for the Cr-rich coatings. A scale of Cr2O3 and a Cr-depleted transition zone near the surface were identified by conducting a transmission electron microscopy investigation on the annealed Cr0.71Ta0.29 coating. The Cr-rich coating absorbed a smaller amount of oxygen, exhibited greater hardness, and maintained nanoscale surface roughness after annealing in the glass molding atmosphere, thus making it an appropriate protective coating for the die material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号