首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A titanium-copper-nickel braze powder is combined with various carrier polymers at a range of loadings and used to braze open cell nickel foams to Ti-6Al-4V plate. The microstructure of the interfaces and the chemical composition are examined, and these are correlated with the mechanical behaviour of the joints, as determined by shear and tensile tests, with the aim being to determine the influence the polymer binder and application method have on the final bond microstructure and properties. The investigations show that, as expected, the binder system used can have an important effect on the amount of oxygen, carbon and nitrogen contained in the braze material, and the mechanical properties obtained. However, the effect is complex, better properties in shear being obtained with an apparently lower quality bond, an observation that is explained by considering the constrained boundary layer formed by the bond. Further Weibull tests show that, although the density variations in the commercially available nickel based foam affect the properties, there is additional variation due to the high degree of process control required to achieve a good bond.  相似文献   

2.
Porous NiTi alloys are highly attractive for energy absorbers, damping devices and biomedical implants. In the present work, metal injection moulding (MIM) in combination with the application of a suitable space holder material was used for the production of NiTi parts with well defined pore sizes and porosities in the range of 30-70 vol.%. For comparing the properties, porous titanium and Ti-6Al-4V samples were prepared in the same manner.Focus of the present work was a detailed investigation of the mechanical properties of porous NiTi to estimate its potential regarding the abovementioned applications. For a Ni-rich NiTi alloy with a porosity of 50 vol.%, fully pronounced pseudoelasticity after 6% compression was demonstrated. An energy dissipation of 1.5 MJ/m3 was measured, which could be directly related to the reversible austenite-martensite phase transformation. At higher deformations, pseudoelasticity becomes more and more superposed by the onset of plastic deformation. Nevertheless, even at deformations of up to 50%, a clearly pronounced amount of pseudoelastic shape recovery still remained. Fatigue of pseudoelasticity was investigated by conducting of up to 230,000 load cycles to 4% compression at a frequency of 1 Hz.  相似文献   

3.
4.
Zr-Ti-Nb porous alloys for biomedical application   总被引:1,自引:0,他引:1  
Recent studies linked to the production of implants focus on the development of porous materials, as they provide good biological fixation to the surrounding tissue through bone tissue ingrowth into the porous network.Research on the biological behavior of metals has shown that the composition of implant biomaterials must be carefully selected to avoid adverse reactions. Ti, Zr and Nb are non-toxic metals with a good compatibility.In the present study, Zr-Ti-Nb foams of two compositions (Zr-34.4%Ti-1.6%Nb and Zr-34.5%Ti-5.5%Nb) were fabricated starting from hydride-dehydride powdered metal using space-holding fillers. Both foams displayed an interconnected porous structure with a porosity of 70%. The average pore size was around 260 μm. The Young's modulus and the compressive plateau stress were observed to vary with the Nb content in the range of 0.3-1.4 GPa and 11-32 MPa, respectively. All alloys tested - in porous and solid forms - showed excellent biocompatibility in subcutaneous as well as in bone tissues. The alloy with more Nb content showed pronounced osteoinductive properties.  相似文献   

5.
The use of porous structures is gaining popularity in biomedical implant manufacture fields due to its ability to promote increased osseointegration and cell proliferation. Selective laser melting (SLM) is a metal additive manufacturing (MAM) technique capable of producing the porous structure. Adjusting the parameter of scan line spacing is a simple and fast way to gain porous structures in SLM process. By using the medical alloy of Ti6Al4V, we systematically study the influence of the scan line spacing on pore characteristics and mechanical properties of porous implant for the first time. The scanning electron microscope (SEM) results show that the porous Ti6Al4V implants with interconnected pore sizes which ranges from 250 to 450 μm is appropriate for compact bone. The compression strength and modulus of the porous Ti6Al4V implants decrease with the increase of the scan line spacing, and two equations by fitting the data have been established to predict their compression properties. The compressive deformation of the porous Ti6Al4V implants presented an adiabatic shear band (ASB) fracture, which is similar to dense Ti6Al4V owing to the dense thin wall structures. The ability to create both high porosity and strong mechanical properties implants opens a new avenue for fabricating porous implants which is used for load-bearing bone defect repair and regeneration.  相似文献   

6.
This paper designs one octahedral Ti6Al4V porous structure and then establishes a simplified model. The Ti6Al4V porous structure is manufactured by selective laser melting. Its experimental and theoretical fracture loads are obtained through theoretical calculation and compression test respectively. The result demonstrates that there is an exponential relationship between the experimental fracture load and the porosity of the porous structure. With an average relative error of 5.86%, the deviation between experimental and theoretical fracture load is small, which indicates that the predication accuracy is comparatively high. So the fracture load calculation theory is valuable in practical applications. Finally, the fracture analysis indicates that fractures of units and porous structures are brittle fractures, which belong to cleavage fracture.  相似文献   

7.
The microstructure of ultrafine grain for magnesium alloys can result in drastic enhancement in their room temperature strength, but the issue of low strength at elevated temperature becomes more serious as well due to grain boundary slide. Here ultrafine-grained Ti/AZ31 magnesium matrix composites with high strength at both room and elevated temperature were prepared by vacuum hot pressing and subsequent hot extrusion. The microstructure of the composite samples before and after consolidation processing was characterized, and the mechanical properties of the as-consolidated bulk samples were measured at room and elevated temperatures. The results indicate that after extrusion ultrafine-grained magnesium alloys were obtained and Ti particulates with particulate size of ~310?nm disperse in Mg matrix. The magnesium grain of AZ31-15at.%Ti grows from 66?nm to 800?nm. Meanwhile, the relative densities of Ti/AZ31 composites are higher than 99%. The yield strength (YS) of extruded AZ31-15at.%Ti composite at room temperature is 341?MPa, being 2.4 times higher than original AZ31 alloy. Theoretical estimation shows that remarkably enhanced room-temperature mechanical strength attributes to grain boundary strengthening with the contribution ratio of 74%. In addition, the peak stress of extruded AZ31-15at.%Ti composite at 573?K is 82?MPa and ultrafine Ti dispersions are responsible for the enhanced strength.  相似文献   

8.
9.
《Advanced Powder Technology》2020,31(4):1693-1701
In this investigation, the synthesis of equiatomic AlCoFeNi, AlCoFeNiMo, AlCoFeNiTi, and AlCoFeNiMoTi high entropy alloys, fabricated by mechanical alloying and conventional sintering processes is presented aiming to elucidate the effect of Mo and Ti additions on the properties of the AlCoFeNi base system. X-ray diffraction studies revealed that after 15 h of milling, only BCC and FCC structures were formed. It was also found that by increasing the crystallite size after sintering, phase transformations and composition variations were observed for all the systems studied but BCC and FCC structures prevailed. Further, the addition of the different alloying elements had a significant effect on the microhardness of the HEAs and particularly, the addition of Mo and Ti to form the AlCoFeNiMoTi system presented the highest value of 894 HV0.2. Finally, it was also found that Mo- containing alloys presented considerable porosity.  相似文献   

10.
Millimeter-sized, free-standing gold structures were created with three levels of multiscale porosity. First, macro- and microporosity, which are useful for mass and heat transport within the structure, are formed within an Ag-19 at.% Au alloy by salt powder replication during powder densification and by entrapped gas expansion during sintering, respectively. Nanoporosity, which provides high surface area, is then produced by silver dealloying of these Ag-19 at.% Au foams. The resulting hierarchical gold structures are annealed at 100-800 °C, thus coarsening the ligaments, increasing relative density, and healing cracks produced during dealloying. The first effect weakens the structure, while the other two make it stronger. A bulk Au sample with hierarchical porosity annealed at 600 °C shows good compressive ductility and a strength in agreement with models.  相似文献   

11.
采用粉末冶金方法生产钛合金制品,材料的利用率几乎可达100%,而且产品性能好,是低成本制造高质量钛合金零部件的重要途径。综述了国内外Ti6Al4V粉末及其粉末冶金制品的制备技术及应用概况,指出低氧球形高质量粉末的制备是钛合金粉末的发展方向,气体雾化是制备优质钛合金粉末的主要工业化生产方法,介绍了传统的粉末冶金方法及近年来新开发的粉末冶金新技术的应用情况。制备工艺的改善,加上民用领域产品需求量的大幅度增加,势必极大程度地推动粉末冶金Ti6Al4V的研究与应用。  相似文献   

12.
Laser surface alloying of Mo, WC and Mo–WC powders on the surface of Ti6Al4V alloys using a 2 kW Nd-YAG laser was performed. The dilution effect upon the microstructure, microhardness and wear resistance of the surface metal matrix composite (MMC) coating was investigated. With a constant thickness of pre-placed powder, the dilution levels of the alloyed layers were found to increase with the incident laser power. The fabricated surface MMC layer was metallurgically bonded to the Ti6Al4V substrate. The microhardness of the fabricated surface layer was found to be inversely proportional to the dilution level. The EDAX and XRD spectra results show that new intermetallic compounds and alloy phases were formed in the MMC layer. With the existence of Mo content in the pre-placed powder, the β-phase of Ti in the MMC coating can be retained at the quenching process. With increasing weight percentage content of WC particles in the Mo–WC pre-pasted powder, the microhardness and sliding wear resistance of the laser surface coating were increased by 87% and 150 times, respectively, as compared with the Ti6Al4V alloy. The surface friction of the laser-fabricated MMC coatings was also decreased as compared with the worn Ti6Al4V substrate.  相似文献   

13.
The present work shows that the effect of several heat treatments on the corrosion resistance and mechanical properties of Ti6Al4V processed by selective laser melting (SLM). The microstructure of Ti6Al4V alloy produced by selective laser melting exhibited bulky prior β columnar grains, and a large amount of fine acicular martensites α′ were observed inside the prior β columnar grains. The acicular martensitic α′ were transformed to a mixture of α and β after heat treatment, and the grain size increases with the increase of heat-treated temperature. The results of 3.5 wt% NaCl solution electrochemical corrosion test showed that the heat-treated samples possess a higher corrosion resistance than the as-received sample. Among of them, the sample after heat-treated at 730 °C exhibited best corrosion resistance and excellent fracture strain. The sample heat treated at 1015 °C showed worst mechanical properties due to the formation of Widmanstätten structure.  相似文献   

14.
The CUORE detector, to be installed in 2010 at LNGS, is made of 988 TeO2 crystals to be cooled to 10 mK. It consists of a large cryogen-free cryostat cooled by five pulse tubes and one high-power specially designed dilution refrigerator (R. Ardito et al. in , [2005]). The cryostat is ∼ 3 m high and has a diameter of ∼ 1.6 m. About 5 tons of lead shielding are to be cooled to below 1 K and a mass of 1.5 ton must be cooled to 10 mK. Some tie-rods sustain the different parts of the experiment. One end of each rod is at low temperature (10 mK for the detector frame, 50 mK for the coldest radiation shield, 700 mK for the shield linked to the still) with the other end usually at room temperature. A thermalization of the rods at the temperature of the first stage of the pulse tubes will be realized. Hence the value of the thermal conductivity of the material up to room temperature is important. At the lowest temperatures, the thermal conductivity has great influence in establishing the thermal load on the dilution refrigerator. The thermal conductivity of the structural material candidates for such tie-rods is usually known down to 4.2 K. Here we present data of thermal conductivity for the Ti6Al4V alloy below its superconductive transition temperature (4.38 K). A comparison over the full temperature range of operation is also done with other materials, such as 316 stainless steel and Torlon, candidates for the realization of the tie-rods.   相似文献   

15.
Abstract

This study details the development of microstructure of Ti14 alloy as a function of the forging temperature and forging ratio in semisolid state and influence of resulting microstructure on the mechanical properties. The results reveal that dynamic recrystallisation occurred during semisolid forging, and the grain refinement was attained. Grain size increased in the forging temperature and decreased in the forging ratio. High ultimate tensile strengths and low elongation have been achieved after semisolid forging. The strength decreased with increasing forging temperature, while the ductility increased with increasing forging ratio. The relative contributions of tensile properties were attributed to the varieties of grain size obtained by thixoforging.  相似文献   

16.
Direct metal laser sintering (DMLS) is a powerful tool to produce titanium based biomaterials because the ease to convert 3D medical imaging data into solid objects with excellent mechanical and corrosion properties. DMLS samples can be functionalized by anodizing, allowing the growth of titanium oxide layers of enhanced properties. In the present paper, a complete characterization of the microstructure, mechanical properties and particularly, the corrosion behavior has been carried out to assess their possible use as biomaterial. The results of the anodized scaffolds are very promising, showing a Young Modulus near to the cortical bone and a low corrosion rate, ensuring their suitability for medical applications.  相似文献   

17.
The microstructural characteristics and mechanical properties in laser beam welds of Ti6Al4V alloy were investigated. The microstructural characteristics in the heat affected zone and fusion zone change obviously after laser beam welding, which are strongly influenced by the welding conditions. The mechanical properties of the welds are evidently dependent on the microstructural characteristics, and the strengthening in the heat affected zone and fusion zone is mainly attributed to the formation of martensite.  相似文献   

18.
In this paper, a multiscale numerical method is presented with the aim to model the response of a Ti6Al4V sheet under explosive forming. The numerical modelling focuses on the accurate definition of the plastic deformation of the Ti6Al4V specimens based on the texture of the material. The viscoplastic self-consistent polycrystal model code (VPSC) is used as a link between macroscopic response and the underlying microstructure taking into account the viscoplastic deformation of the specimen. Comparison is made with experimental results. The Cazacu–Barlat (CB06) material model is used because of its capability to describe the yielding asymmetry between tension and compression and to take into account the anisotropic behaviour of the sheet. The study focuses on the evaluation of the material model parameters and on how these affect the structural response of the Ti6Al4V specimens under explosive loading.

This paper is part of a Themed Issue on Euromech 570: Interface-dominated materials.  相似文献   

19.
20.
The aim of this article is to study the influence of a Ti6Al4V microstructure on cutting forces during the micromilling process. Samples were annealed above the β-transus at three different temperatures—1020, 1050, 1080°C—and then cooled in a furnace, air, and water, in order to produce different Widmastätten microstructures. Micromilling tests were carried out on heat-treated samples, and the cutting forces were measured by means of a load cell. The results were correlated to the sample microstructures, which were thoroughly investigated by means of an optical microscope, X-ray diffraction, and microhardness measurements.

The highest cutting forces were observed for soft and ductile furnace-cooled samples, suggesting that the most important factor affecting workability is the material ductility, while hardness is a less relevant parameter.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号