首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
This study self-develops a novel type of photothermoelectric power generation modules. Dye-sensitized solar cells (DSSCs) serve as the photoelectric conversion system and a copper (Cu) heat-transfer nanofilm coating on both sides of the thermoelectric generator (TEG) acts as a thermoelectric conversion system. Thus module assembly absorbs light and generates electricity by DSSCs, and also recycles waste heat and generates power by the TEG. In addition, a set of pulsating heat pipes (PHP) filled with Cu nanofluid is placed on the cooling side to increase cooling effects and enhance the power generation efficiency. Results show that when the heat source of thermoelectric modules reaches 90 degrees C, TEG power output is increased by 85.7%. Besides, after thermoelectric modules are heated by additional heat source at 80 degrees C, the electrical energy generated by them can let a NiMH cell (1.25 V) be sufficiently charged in about 30 minutes. When photothermoelectric modules is illumined by simulated light, the temperature difference of two sides of TEG can reach 7 degrees C and the thermoelectric conversion efficiency is 2.17%. Furthermore, the power output of the thermoelectric modules is 11.48 mW/cm2, enhancing 1.4 % compared to merely using DSSCs module.  相似文献   

2.
A system design method of thermoelectric cooler is developed in the present study. The design calculation utilizes the performance curve of the thermoelectric module that is determined experimentally. An automatic test apparatus was designed and built to illustrate the testing. The performance test results of the module are used to determine the physical properties and derive an empirical relation for the performance of thermoelectric module. These results are then used in the system analysis of a thermoelectric cooler using a thermal network model. The thermal resistance of heat sink is chosen as one of the key parameters in the design of a thermoelectric cooler. The system simulation shows that there exists a cheapest heat sink for the design of a thermoelectric cooler. It is also shown that the system simulation coincides with experimental data of a thermoelectric cooler using an air-cooled heat sink with thermal resistance 0.2515°C/W. An optimal design of thermoelectric cooler at the conditions of optimal COP is also studied. The optimal design can be made either on the basis of the maximum value of the optimal cooling capacity, or on the basis of the best heat sink technology available.  相似文献   

3.
Multi-stage thermoelectric coolers offer larger temperature differences between heat source and heat sink than single-stage thermoelectric coolers. In this paper, a pyramid-type multi-stage cooler is analyzed, focusing on the importance of maximum attainable target heat flux and overall coefficient of performance, COP. Having considered the COP and the thermal resistance of a heat sink as key parameters in the design of a multi-stage thermoelectric cooler, analytical formulas for COP and heat sink thermal resistance versus working electrical current are derived. For a fixed cooling target heat flux, the ratio of the heat sink thermal resistance to the respective single-stage value and the attainable COP in a cascaded cooler are determined as a function of the number of stages. Numerical simulations clearly indicate that the thermal resistance of the hot side heat sink is the controlling factor in determining the overall performance of a multi-stage thermoelectric cooler.  相似文献   

4.
设计、组装一台便携式热电制冷器并对其性能进行试验研究,结果显示,200 mL的水在33 min内降温17.0℃,折合制冷量7.3 W,制冷器容器的高度方向上存在较大温差,且水温降低后密度增大而下沉,使水的自然对流换热过程受到抑制,这2个因素的综合作用使制冷片冷热端温差增大,制冷量减小,工况恶化。为优化该制冷器的制冷性能,在制冷片冷端增设重力式热管(充注R134a)并进行试验研究,结果表明,1 L的水在75 min内温度降低12℃,折合制冷量9.3 W,比优化前增大了27.4%。表明重力式热管的加入能够改善制冷器内水的对流换热情况,增大换热面积,减小竖直方向上的传热温差。  相似文献   

5.
A linear dynamic model of the thermoelectric cooler including the heat sink and the cooling-load heat exchanger was derived using small-signal linearization method. It shows that the dynamic model of a thermoelectric cooler has two poles and one zero. The linear dynamic model is shown to vary with operating conditions. A linear feedback system is designed for the cold-end temperature control of a thermoelectric cooler using the average linear dynamic model of the thermoelectric cooler and a PDF controller structure. The step response tests show that the controller has a very satisfactory performance. Some tests under variable cooling load and ambient temperature are also performed to examine the disturbance-rejection property of the controller. Experimental results show that the cold-end temperature can be maintained at the fixed value within ±0.1°C irrespective of the variations of the cooling load and the ambient conditions.  相似文献   

6.
本文根据变频热泵机组系统特点和制冷循环热传导原理设计了一种变频空调电控箱体的降温模块,该降温模块的U型散热装置与制冷剂配管接触弧度为3/4圆弧结构,接触点切线成45°斜角,放置在空调系统中出储液器到进入电子膨胀阀之间的管路部分,使制冷剂经过该散热装置的温度处于40℃~50℃之间最佳温度范围。在环境温度43℃、出水温度15℃的制冷工况下,通过实验分析和验证了增加该散热装置和自然冷却两种状态下系统的性能。结果表明:加装制冷剂散热装置机组运行时变频器功率器件产生的热量可以通过制冷剂散热装置带走,降温效果较为明显。同时,通过理论计算和实验测试对比了变频器功率发热部件温度与制冷剂进口温度之间温度差变化情况,验证了加装制冷剂散热装置的效果。  相似文献   

7.
CCD芯片热电制冷的非稳态传热研究   总被引:5,自引:0,他引:5  
针对散热受限热电制冷系统中温度非稳态变化过程,建立了一个简单的分析模型,基于该模型对CCD芯片热电制冷进行了仿真分析和实验研究.仿真和实验结果均表明:在散热受限条件下,热电制冷系统的热传过程长时间处于非稳态;存在一个最优制冷电流I_(max),当I_c相似文献   

8.
田金颖  牛建会 《制冷》2010,29(2):9-14
随着电力电子技术的不断发展,高热流密度器件热控制问题以及出现的热流分布不均匀的现象,是电子电器设备亟待解决的关键技术。热管作为高效传热元件,已经广泛应用于电子器件的散热技术研究中。本文对新型平板式热管散热器进行了数值模拟和实验研究。根据电子器件的运行工况,建立了散热器性能测试系统,并对平板热管型电子器件散热器进行了在不同工况下的性能实验。结果表明采用平板热管散热器可以有效提高CPU芯片的散热性能,芯片发热量在160W后为其最佳工作状态。同时用数值模拟方法对平板热管散热器底面的导热效果进行了优化设计,通过改变导热系数以及扩大模拟芯片尺寸来达到改善CPU冷却散热器的散热效果的目的,并得到了一些有价值的结论,这对改进管散热器的散热效果有一定的指导意义。  相似文献   

9.
目前采用半导体制冷的小型制冷装置,都有效率不高的缺点,而对于半导体制冷的研究,大多都是对于半导体元件的热端的散热系统进行优化设计。在对半导体制冷技术原理分析的基础上,针对基于半导体制冷的小型制冷装置,采用增大冷端的对流换热面积和提高冷端的对流换热系数的方法来解决冷量传递问题,提高小型制冷装置的工作效率。  相似文献   

10.
In this study, experimental and theoretical studies on thermoelectric cooler (TEC) performance for cooling a refrigerated object (water in a tank) were performed. Microchannel heat sinks fabricated with etched silicon wafers were employed on the TEC hot side to dissipate heat. The measurements show that the temperature of the refrigerated object decreased with time. A theoretical model based on a lumped system was established to predict the transient behavior of the variation in temperature for the refrigerated object with time. The theoretical predicted temperature variation was in good agreement with the measured data. The relationship among the heat sink thermal resistances, TEC electric current input and minimum refrigerated objected temperature was examined based on the theoretical model. The calculated minimum temperatures were showed for the several cases of heat sink thermal resistance on the TEC hot side and electric current input. The minimum temperature can be obtained by increasing the electrical current input and decreasing the heat sink thermal resistance.  相似文献   

11.
A model of thermoelectric generator-driven thermoelectric refrigerator with external heat transfer is proposed. The performance of the combined thermoelectric refrigerator device obeying Newton’s heat transfer law is analyzed using the combination of finite time thermodynamics and non-equilibrium thermodynamics. Two analytical formulae for cooling load vs. working electrical current, and the coefficient of performance (COP) vs. working electrical current, are derived. For a fixed total heat transfer surface area of four heat exchangers, the allocations of the heat transfer surface area among the four heat exchangers are optimized for maximizing the cooling load and the coefficient of performance (COP) of the combined thermoelectric refrigerator device. For a fixed total number of thermoelectric elements, the ratio of number of thermoelectric elements of the generator to the total number of thermoelectric elements is also optimized for maximizing both the cooling load and the COP of the combined thermoelectric refrigerator device. The influences of thermoelectric element allocation and heat transfer area allocation are analyzed by detailed numerical examples. Optimum working electrical current for maximum cooling load and COP at different total number of thermoelectric elements and different total heat transfer area are obtained, respectively.  相似文献   

12.
With the improvement of computational speed, thermal management becomes a serious concern in computer system. CPU chips are squeezing into tighter and tighter spaces with no more room for heat to escape. Total power-dissipation levels now reside about 110 W, and peak power densities are reaching 400–500 W/mm2 and are still steadily climbing. As a result, higher performance and greater reliability are extremely tough to attain. But since the standard conduction and forced-air convection techniques no longer be able to provide adequate cooling for sophisticated electronic systems, new solutions are being looked into liquid cooling, thermoelectric cooling, heat pipes, and vapor chambers. In this paper, we investigated a novel method to significantly lower the chip temperature using liquid metal with low melting point as the cooling fluid. The liquid gallium was particularly adopted to test the feasibility of this cooling approach, due to its low melting point at 29.7 °C, high thermal conductivity and heat capacity. A series of experiments with different flow rates and heat dissipation rates were performed. The cooling capacity and reliability of the liquid metal were compared with that of the water-cooling and very attractive results were obtained. Finally, a general criterion was introduced to evaluate the cooling performance difference between the liquid metal cooling and the water-cooling. The results indicate that the temperature of the computer chip can be significantly reduced with the increasing flow rate of liquid gallium, which suggests that an even higher power dissipation density can be achieved with a large flow of liquid gallium and large area of heat dissipation. The concept discussed in this paper is expected to provide a powerful cooling strategy for the notebook PC, desktop PC and large computer. It can also be extended to more wide area involved with thermal management on high heat generation rate.  相似文献   

13.
This paper presents an approach of fabricating thermoelectric cooling (TEC) module for enhancing the maximum coefficient of performance (COP) of TEC module. A significant novelty is that each stage thermoelectric couples have different leg lengths which decrease stage by stage from cold side to hot side of TEC module so that the lower stage can completely pump the heat dissipated by the upper stage. In the design configuration of the TEC module, the lower and upper stages are connected electrically in parallel and thermally in series only through intermediate copper metal strips and copper conducting wires, and thus the interstage thermal resistances and the heat leakage can be reduced compared with that of a conventional pyramid-styled configuration. A mathematical model is also developed to simulate the performances of the TEC module. The simulation results show that the enhancement in maximum COP of the TEC module can be obtained by using internally cascaded multistage thermoelectric couples.  相似文献   

14.
A new configuration of combined thermoelectric device, two-stage thermoelectric refrigerator driven by two-stage thermoelectric generator, is proposed in this paper. The thermodynamic model of the combined device is built by using non-equilibrium thermodynamic theory. The analytical formulae for the stable working electrical current, the cooling load versus the working electrical current, and the coefficient of performance (COP) versus the working electrical current of the combined device are derived. For the fixed total number of thermoelectric elements of the combined device, the allocations of the thermoelectric element pairs among the two thermoelectric generators and the two thermoelectric refrigerators are optimized for maximum cooling load and COP, respectively. The influences of the heat source temperature of the two-stage thermoelectric generator and the heat source (cooling space) temperature of the two-stage thermoelectric refrigerator on the optimal performance of the combined thermoelectric device are analyzed by detailed numerical examples.  相似文献   

15.
本文以刀片式服务器的冷却为研究对象,应用6SigmaDC软件的电子热分析模块,构建了刀片式服务器模型,对不同参数下的翅片式散热器在刀片式服务器中的散热情况进行了数学模拟。得到翅片式散热器翅片高度、齿数、翅片厚度等多个参数对散热器散热性能的影响规律,通过对比分析得到翅片散热器的最优结构参数,及芯片风冷散热所能达到的最低温度。为优化芯片的散热,在相同服务器上构建冷水板水冷散热模型,与风冷散热时芯片的温度进行对比,得出芯片水冷散热性能是风冷散热的1. 3倍。基于刀片式服务器内部温度分布分析,提出刀片式服务器采用风冷与水冷相结合的混合冷却为最佳散热方式,为数据中心服务器的散热设计提供了理论参考。  相似文献   

16.
针对半导体器件热通量逐年增长的现象,讨论了1种由热电模块、散热器等集成的散热装置来满足其散热要求.通过在icepak中建立该散热装置的数值模型,从热电模块的冷、热端温度场及热电模块的制冷量和制冷系数,分析工作电流、热电臂面长比和环境温度对其散热性能的影响,从而选择合适的热电模块,并使之在最佳工况下运行,从而优化散热装置...  相似文献   

17.
The physical model of the thermoelement in the unsteady cooling mode is considered. The heat capacity of the cooling object and the connecting and insulating plates, the heat load, the heat exchange with the ambient, the release of the Joule heat due to the presence of contact resistance between the thermoelectric material and the metallic connecting plate, as well as the Thomson effect impact in the bulk of thermoelement legs are taken into account. A method is described for calculating the optimal dependence of the thermoelement supply current on time, which provides the preset time dependence of the cooling temperature. Examples of computer simulation of current control functions for implementation of the specified time functions of operating temperature in medical devices are given.  相似文献   

18.
A relation between the heat release from a fuel cell stack and an air conditioning system's performance was investigated. The air conditioning system installed in a fuel cell vehicle can be used for stack cooling when additional stack heat release is required over a fixed radiator capacity during high vehicle power generation. This study investigated the performance of a stack cooling system using CO2 air conditioner at various operating conditions. Also, the heat releasing effectiveness and mutual interference were analyzed and compared with those for the conventional radiator cooling system with/without cabin cooling. When the radiator coolant inlet temperature and flow rate were 65 °C and 80 L/min, respectively, for the outdoor air inlet speed of 5 m/s, the heat release of the stack cooling system with the aid of CO2 air conditioner increased up to 36% more than that of the conventional radiator cooling system with cabin cooling. Furthermore, this increased by 7% versus the case without cabin cooling.  相似文献   

19.
In this paper, the thermal conductivity of a single carbon fiber under different manufacturing conditions is measured using the steady-state short-hot-wire method. This method is based on the heat transfer phenomena of a pin fin attached to a short hot wire. The short hot wire is supplied with a constant direct current to generate a uniform heat flux, and both its ends are connected to lead wires and maintained at the initial temperature. The test fiber is attached as a pin fin to the center position of the hot wire at one end and the other end is connected to a heat sink. One-dimensional steady-state heat conduction along the hot wire and test fiber is assumed, and the basic equations are analytically solved. From the solutions, the relations among the average temperature rise of the hot wire, the heat generation rate, the temperature at the attached end of the fiber, and the heat flux from the hot wire to the fiber are accurately obtained. Based on the relations, the thermal conductivity of the single carbon fiber can be easily estimated when the average temperature rise and the heat generation rate of the hot wire are measured for the same system. Further, the electrical conductivity of the single carbon fiber is measured under the same conditions as for the thermal conductivity using a four-point contact method. The relation between the thermal conductivity and electrical conductivity is further discussed, based on the crystal microstructure.  相似文献   

20.
某特种设备热电制冷热端散热实验研究   总被引:1,自引:0,他引:1  
热电制冷元件是一种高热流密度元件,在红外测量、低温超导、空间技术等领域有广泛的应用。本文建立了实验装置并对高温43℃下某特种设备热电制冷热端在几种不同散热方式下制冷效果进行了比较,证明了可通过改善传热条件来提高其制冷量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号