首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Unilateral microinjection of neurotensin in the ventral tegmental area of the rat (2.5 micrograms/0.5 microliter) produced behavioural excitation illustrated by contralateral circling. Given orally, SR 48692, a selective and potent non-peptide neurotensin receptor antagonist, significantly reduced these rotations with a triphasic dose-effect relationship. Inhibition occurred at 0.12 mg/kg; further increases in dose up to 2.5 mg/kg produced no significant antagonism, then at doses > or = 5 mg/kg, a second phase of antagonism was observed. Bilateral injection of neurotensin (0.5 microgram each side) into the nucleus accumbens antagonized the increase in locomotor activity following intraperitoneal injection of amphetamine. Given orally, SR 48692 reduced dose-dependently (0.1-1 mg/kg) these intra-accumbens neurotensin effects. Using high pressure liquid chromatography with electrochemical detection, we showed that microgram amounts of neurotensin injected into the ventral tegmental area increased dihydroxyphenylacetate/dopamine ratios in the nucleus accumbens. Using in vivo voltammetry techniques, we found that the injection of nanogram and picogram amounts of neurotensin in the ventral tegmental area stimulated dopamine efflux in the nucleus accumbens. None of these biochemical changes were affected by SR 48692 (0.1-10 mg/kg). These results indicate complex interactions between neurotensin and the mesolimbic dopamine system. More particularly, the differential ability of SR 48692 to affect neurotensin-evoked behavioural versus biochemical changes supports the concept of neurotensin receptor heterogeneity.  相似文献   

2.
The influence of different pretreatments upon locomotor stimulation, induced by injection of ergometrine into the nucleus accumbens of rats, was investigated. The noradrenergic antagonists phenoxybenzamine and propranolol and the serotonin antagonist methysergide produced no clear changes. Reserpine, alone or in combination with alpha-MPT, considerably shortened the delay between injection of ergometrine and start of locomotor stimulation. Ro-DOPA, but not Ro-5-HTP, clearly antagonized the locomotor stimulation. The effect of ergometrine was strongly diminished following injection of haloperidol directly into the nucleus accumbens. A strong inhibition was also observedfollowing intracerebral administration of the imidazoline derivative (3,4-dihydroxy-phenylamino)-2-imidazoline (DPI), but not after injection of the structurally related compound clonidine. DPI by itself and also the ergot derivatives ergocornine, bromocryptine, LSD, dihydroergotamine and methysergide in doses 5--10 times as high as that of ergometrine failed to produce locomotor stimulation following injection into the nucleus accumbens. The results are discussed, especially with regard to the role of dopamine.  相似文献   

3.
Afferents from the basolateral amygdala and dopamine projections from the ventral tegmental area to the nucleus accumbens have both been implicated in reward-related processes. The present study used in vivo chronoamperometry with stearate-graphite paste electrodes in urethane-anaesthetized rats to determine how basolateral amygdala efferents to the nucleus accumbens synaptically regulate dopamine efflux. Repetitive-pulse (20 Hz for 10 s) electrical stimulation of the basolateral amygdala evoked a complex pattern of changes in monitored dopamine oxidation currents in the nucleus accumbens related to dopamine efflux. These changes were characterized by an initial increase that was time-locked to stimulation, a secondary decrease below baseline, followed by a prolonged increase in the dopamine signal above baseline. The effects of burst-patterned stimulation (100 Hz, 5 pulses/burst, 1-s interburst interval, 40 s) of the basolateral amygdala on the basal accumbens dopamine signal were similar to those evoked by 20 Hz stimulation, with the lack of a secondary suppressive component. Infusions of the ionotropic glutamate receptor antagonists (+/-)-2-amino-5-phosphonopentanoic acid (APV) or 6,7-dinitroquinoxaline-2,3-dione (DNQX) into the nucleus accumbens dose-dependently blocked or attenuated the initial and prolonged increases in the dopamine signal following 20 Hz or burst-patterned basolateral amygdala stimulation. Infusions of the metabotropic glutamate receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine selectively blocked the intermediate suppressive effect of 20 Hz basolateral amygdala stimulation on dopamine oxidation currents. Blockade of glutamate receptors or inhibition of dopamine neuronal activity via infusions of either APV + DNQX, lidocaine or gamma-hydroxybutyric acid, respectively, into the ventral tegmental area did not effect the pattern of changes in the accumbens dopamine signal evoked by basolateral amygdala stimulation. These data suggest that the glutamatergic basolateral amygdala inputs to nucleus accumbens dopamine terminals synaptically facilitate or depress dopamine efflux, and these effects are independent of dopamine neuronal firing activity. Moreover, these results imply that changes in nucleus accumbens dopamine levels following presentation of reward-related stimuli may be mediated, in part, by the basolateral amygdala.  相似文献   

4.
Reports an error in "Histamine H? receptors mediate morphine-induced locomotor hyperactivity of the C57BL/6J mouse" by G. Andrew Mickley (Behavioral Neuroscience, 1986[Feb], Vol 100[1], 79-84). An incorrect word was inadvertently printed. The last sentence of the introduction (p. 79) should read "This was accomplished by challenging the opiate-stimulated locomotion of the C57BL/6J mouse with injections of antihistamines into the nucleus accumbens/stria terminalis or lateral ventricles." (The following abstract of the original article appeared in record 1986-14026-001.) Locomotor hyperactivity induced in C57BL/6J male mice (N=43) by intraperitoneal morphine sulfate (30 mg/kg) was challenged with intracranial injections of antihistamines or the opiate antagonist naloxone HCl (2 μg). When 75 μg of cimetidine, an H? receptor blocker, was injected into the nucleus accumbens/stria terminalis, it significantly reduced opiate-stimulated locomotion. However, ventricular injections of cimetidine did not significantly alter hyperactivity induced by either morphine or dextroamphetamine sulfate (4 mg/kg), nor did cimetidine depress spontaneous locomotion. Although naloxone eliminated morphine-induced locomotion when injected into either the nucleus accumbens or the ventricles, chlorpheniramine (20 μg), an H? receptor blocker, failed to reduce this behavior. Data suggest that opiate-stimulated locomotion of the C57BL/6J mouse may be partially mediated by histamine H? receptors of the nucleus accumbens or closely adjacent structures. (27 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
The nucleus accumbens and ventral pallidum receive dopamine (DA) projections from the mesencephalon. Although DA inputs to the nucleus accumbens are implicated in both locomotion and reward processes, little is known of the behavioural significance of DA in the ventral pallidum. These studies examined the effects of D-amphetamine injected into the nucleus accumbens or ventral pallidum on locomotor activity and responding for a conditioned reward (CR). In the nucleus accumbens D-amphetamine dose dependently (1, 3 and 10 microg) increased locomotion within 5-10 min of injection. Intra-ventral pallidum microinjections of D-amphetamine also increased activity in this dose range, but the effect occurred with a longer latency (5-20 min). The magnitude of the response evoked by ventral pallidum injections was lower than that evoked by nucleus accumbens injections. The GABAA antagonist picrotoxin (0.1 microg) stimulated activity when injected into the ventral pallidum but not the nucleus accumbens, providing a pharmacological dissociation between the two injection sites. In the CR studies, D-amphetamine injected into both sites potentiated responding for a CR previously paired with food delivery, without altering responding on an inactive lever. Picrotoxin injected into the ventral pallidum reduced responding and abolished the selectivity of responding for CR. The results show that DA release in the ventral pallidum enhances locomotion and responding for a CR, providing evidence that DA in the ventral pallidum plays a significant role in the mediation of the effects of D-amphetamine. The failure of picrotoxin to elevate responding for CR despite increasing locomotor activity indicates that pharmacologically-induced blockade of GABAA receptors in the ventral pallidum disrupts goal-directed responding.  相似文献   

6.
The purpose of this experiment was to investigate the functional contributions of various limbic structures to locomotion and stereotypy induced by dopaminergic drugs. Female rats were randomly assigned to one of 5 groups (n = 10-14 rats/group) that received either a lesion of the hippocampus (colchicine + kainic acid), basolateral amygdala (quinolinic acid), frontal cortex (aspiration), nucleus accumbens (ibotenic acid), or served as unoperated controls. Beginning at least 2 weeks following surgery locomotion (measured as photocell beam breaks) elicited by D-amphetamine (0.0, 0.32, 1.0 and 3.2 mg/kg), SKF 82958 (0.0, 0.04, 0.08 and 0.16 mg/kg) or quinpirole (0.0, 0.25, 0.1 and 0.5 mg/kg) was determined. In agreement with previous results rats with hippocampal lesions were hyperactive in response to amphetamine. In comparison to these changes in drug-induced locomotion, lesions of the basolateral amygdala, and frontal cortex had only minor effects on drug-induced locomotion. Lesions of the nucleus accumbens produced consistent hyperactivity that was suppressed by doses of amphetamine or quinpirole that elicited behavioral stereotypy. These results provide evidence suggesting that, in comparison to other limbic structures that have substantial inputs to the nucleus accumbens, the hippocampus play a relatively prominent role in the modulation of drug-induced locomotion.  相似文献   

7.
Rats with limbic system damage display increases in responsivity to sensory stimulation and changes in the sensitivity to amphetamine, suggesting that their condition may parallel that of human schizophrenia. This experiment examined locomotion and stereotyped behavior in mature, male rats that had received aspirative lesions of the hippocampus, control lesions of the overlying parietal cortex, or were unoperated controls. Locomotion, measured as photocell beam breaks, was recorded during 2- or 3-h test sessions. Behavioral stereotypy was simultaneously rated. Hippocampal lesioned rats exhibited a selective enhancement in locomotion following D-amphetamine (0.0-5.6 mg/kg) when compared to animals in the control groups. Similar results were observed following injections of apomorphine (0.0-0.25 mg/kg), a mixed D1 and D2 agonist. In order to determine if D1 or D2 receptors were involved in this increased locomotion, the D1 agonist SKF 38393 (0.0-15 mg/kg) and the D2 agonist quinpirole (0.0-0.5 mg/kg) were tested alone and in combination. Hippocampal-ablated rats showed significantly increased locomotion only in response to quinpirole, suggesting that these lesion-induced increases were largely mediated by D2 receptors. When both drugs were administered together, SKF 38393 further enhanced the locomotor stimulating effects of quinpirole in hippocampal lesioned rats, indicating a synergistic interaction between D1 and D2 receptors in the modulation of locomotion. These findings provide further evidence of hippocampal modulation of locomotion and suggest that dopaminergic mechanisms in the nucleus accumbens, probably involving changes in receptor sensitivity, are involved. The results are discussed in relation to the functional roles of the nucleus accumbens and in terms of their implications for mental diseases including schizophrenia.  相似文献   

8.
Evidence suggests that phospholipase A2 (PLA2) activation is involved in numerous neuroplastic phenomena, including long-term potentiation. Considering the pharmacological similarities between long-term potentiation and stimulant sensitization, it seems possible that PLA2 inhibition activity also might have a role in the induction of stimulant sensitization. In this study, we have investigated whether PLA2 inhibition, by quinacrine, has any effects on stimulant-induced behavioral sensitization. Both locomotor and stereotypic behavioral sensitization were dose-dependently blocked in rats pretreated with quinacrine (8-25 mg/kg i.p.) 15 min before cocaine (30 mg/kg i.p.), when tested with cocaine (15 mg/kg i.p) 72 hr later. Similar results also were found with d-amphetamine (2 mg/kg i.p.) sensitization using a 10-day treatment regimen with testing on day 11. The ability of PLA2 activation, by melittin, to produce cocaine sensitization also was tested. Local injections of melittin (0.1 microgram/0.4 microliter) into the ventral tegmental area sensitized the subsequent stimulation of locomotor activity, stereotypy and nucleus accumbens dopamine release by cocaine, when tested 72 hr later. Local injections of melittin (0.1-1.0 microgram/0.8 microliter) into the nucleus accumbens had a moderate sensitizing effect on locomotion. Quinacrine (16 mg/kg) pretreatment 45 min before intraventral tegmental area melittin injection significantly decreased melittin-induced sensitization of the locomotor and stereotypy response to cocaine. These results indicate that PLA2 activation may play a role in the induction of stimulant sensitization. It is proposed that PLA2 activity in mesolimbic dopamine neurons, at the level of the cell bodies and perhaps the nerve terminals, is involved in the biochemical mechanisms mediating the development of stimulant sensitization.  相似文献   

9.
Either intact rats, sham-operated rats, or rats with lesions of the paramedian reticular nucleus (PRN) were exposed to cold (2 degrees C) or heat (36 degrees C) stress and their locomotor activity responses and striatal dopamine (DA) release were compared. At room temperature (22 degrees C), results analyzed revealed significant effects in the PRN-lesioned rats: increases in locomotion (including both horizontal and vertical motion), direction of turnings (including both clockwise and anticlockwise) or striatal DA release. In both the intact rats and the sham-operated rats, either cold or heat stress increased the locomotion, the direction of turnings and the striatal DA release. The increases in both vertical motion and striatal DA release following cold or heat stress were attenuated by PRN lesions. The data suggest that a PRN-striatal DA link existing in rat's brain which affects both the spontaneous and the thermal stress induced locomotor activities.  相似文献   

10.
Daily administration of psychomotor stimulants in a distinctive environment can impart on the environment stimulantlike properties. Rats injected with amphetamine (0.75 mg/kg, sc) daily for 5 days exhibited a robust unconditioned locomotor response, measured in photocell cages, and showed a conditioned locomotor response when treated with saline on the 6th day. This conditioned locomotor response was found to be significantly attenuated by 6-hydroxydopamine (6-OHDA) lesions of the nucleus accumbens when the lesion was made either pre- or postconditioning. Similarly, although rats with 6-OHDA lesions of the nucleus accumbens exhibited a robust supersensitive unconditioned locomotor hyperactivity in response to apomorphine (0.1 mg/kg, sc), they did not show a conditioned response on the test day. Results suggest that the mesolimbic dopamine system may be responsible for both the unconditioned and conditioned locomotor responses to psychomotor stimulant drugs. Further, conditioned locomotion depends on a critical interaction between the physiological release of presynaptic dopamine and occupation of postsynaptic receptors. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
Electrolytic lesions of the medial core of the nucleus accumbens (NAc) in male Long-Evans rats increased spontaneous locomotion, enhanced the locomotor stimulating effect of acute 5.0 mg/kg cocaine, enhanced the development and subsequent expression of locomotor sensitization produced by repeated injections of 0.4 mg/kg nicotine but not 7.5 mg/kg cocaine, and enhanced the expression of conditioned locomotion. Given that 6-hydroxydopamine lesions of the NAc typically have effects on locomotor-related processes that are opposite of those produced by electrolytic and excitotoxic lesions, these data are consistent with a hypothesis that the NAc output, especially from the core, inhibits a variety of such processes and that the DA input to the NAc enhances these processes by inhibiting this inhibitory output. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
The contribution of dopamine (DA) to the locomotion elicited by activation of nucleus accumbens (NAcc) metabotropic glutamate receptors (mGluRs) was investigated in the rat. Different groups of rats were pretreated with bilateral microinjections of either 6-hydroxydopamine (6-OHDA) or its vehicle into the NAcc and, on separate tests starting 10 days later, were tested for locomotion following microinjections (into the same site) of saline, the mGluR agonist, 1-aminocyclopentane-trans-1,3-dicarboxylic acid [(1S, 3R)-ACPD, 0.5 nmol/side] and amphetamine (AMPH, 6.8 nmol/side). DA levels at the microinjection sites were significantly depleted in 6-OHDA-treated rats (42-99% depletions compared to control values obtained in vehicle-treated rats). In contrast to the increased locomotion observed in non-lesioned animals, rats pretreated with 6-OHDA showed no increase in locomotor activity in response to (1S, 3R)-ACPD or AMPH when these were microinjected into the NAcc. The two groups of rats were indistinguishable when tested following NAcc saline. These findings suggest that, as with AMPH, enhanced locomotion produced by NAcc mGluR activation is dependent on intact DA neurotransmission in this site.  相似文献   

13.
The locomotor hyperactivity induced by systemic or local (nucleus accumbens) D-amphetamine injections can be blocked by systemic or local (prefrontal cortex) injections of prazosin, an alpha1-adrenergic antagonist (Blance et al., 1994). Microdialysis studies performed on freely moving animals indicated that prazosin (0.5 mg/kg, i.p.) does not modify the increase in the extracellular dopamine (DA) levels in the nucleus accumbens that are induced by D-amphetamine (2.0 mg/kg, i.p.), but it inhibits the D-amphetamine-induced locomotor hyperactivity (-63%, p < 0.0001). No behavioral activation occurred after the bilateral local perfusion of 3 microM D-amphetamine in the nucleus accumbens, although it led to a fivefold increase in extracellular DA levels. This increase in extracellular DA levels was not affected by prazosin (0.5 mg/kg, i.p.). When an intraperitoneal injection of D-amphetamine (0.5 mg/kg) was superimposed to the continuous local perfusion of 3 microM D-amphetamine, it induced a 64% increase in the extracellular DA levels in the nucleus accumbens, and this response was associated with simultaneous behavioral activation. Both the increases in extracellular DA levels and in locomotor activity were completely blocked by a pretreatment with prazosin, injected either systemically (0.5 mg/kg, i.p.) or locally and bilaterally into the prefrontal cortex (500 pmol/side). Complementary experiments indicated that the focal application of D-amphetamine requires at least a 4.8-fold higher increase in DA output compared with systemic D-amphetamine for the behavioral effects to be elicited. Altogether, these results suggest that locomotor activating effects of D-amphetamine are caused by the stimulation of cortical alpha1-adrenergic receptors by noradrenaline, which increases the release of a functional part of subcortical DA.  相似文献   

14.
Prepulse inhibition (PPI) of the acoustic startle response is observed when the startling noise pulse is preceded by a weak, non-startling stimulus. PPI has been considered as a measure for sensorimotor gating mechanisms. Disruption of PPI can be found in schizophrenic patients as well as after blockade of NMDA receptors or stimulation of dopamine receptors in rats. The neuronal circuitry which regulates PPI consists of cortico-limbic brain structures where the nucleus accumbens (NAC) plays a key role. The NAC exerts its modulating effects on PPI by way of a projection from the ventral pallidum (VP) to the pedunculopontine tegmental nucleus (PPTg). We recently postulated that the reduction of PPI by intra-NAC infusion of glycine-site NMDA antagonists is not mediated by the VP. We tested here this hypothesis in rats with excitotoxic lesions of the VP which were systemically treated with apomorphine or MK-801 or received intraNAC infusions of dopamine or the glycine-site NMDA antagonist 7-chlorokynurenic acid. Lesioned rats showed a marked deficit in PPI after MK-801 and 7-chlorokynurenate treatment but not after apomorphine or dopamine injection, in contrast to sham-lesioned controls showing deficits in PPI under all conditions. These data provide behavioral evidence for the existence of a pathway which does not include the VP for the mediation of sensorimotor gating deficits. We propose that a direct connection between the NAC and PPTg may be responsible for the effects of NMDA/glycine receptor blockade, whereas the VP is an indispensable relay for the disruptive effects on PPI exerted by the NAC dopamine system.  相似文献   

15.
Systemic nicotine enhances burst firing of dopamine neurons in the ventral tegmental area and dopamine release in the nucleus accumbens, mainly via stimulation of nicotinic acetylcholine receptors in the ventral tegmental area. Given that both the neuronal activity of mesolimbic dopamine neurons and terminal dopamine release are regulated by excitatory amino acid inputs to the ventral tegmental area and that nicotine facilitates glutamatergic transmission in brain, we investigated the putative role of ionotropic glutamate receptors within the ventral tegmental area for the effects of nicotine on dopamine release in the nucleus accumbens using microdialysis, with one probe implanted in the ventral tegmental area for drug application and another in the ipsilateral nucleus accumbens for measuring dopamine, in awake rats. Systemic nicotine (0.5 mg/kg, s.c.) and infusion of nicotine (1.0 mM) into the ventral tegmental area increased dopamine output in the nucleus accumbens. Intrategmental infusion of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (0.1 mM) or N-methyl-D-aspartate (0.3 mM) increased accumbal dopamine release; these effects were antagonized by concomitant infusion of a selective antagonist at N-methyl-D-aspartate receptors, 2-amino-5-phosphonopentanoic acid (0.3 mM), and non-N-methyl-D-aspartate receptors, 6-cyano-7-nitroquinoxaline-2,3-dione (0.3 mM), respectively. Infusion of either antagonist (0.3 or 1.0 mM) into the ventral tegmental area did not affect basal dopamine levels, whereas infusion of 2-amino-5-phosphonopentanoic acid, but not 6-cyano-7-nitroquinoxaline-2,3-dione, starting 40 min before nicotine injection dose-dependently attenuated the nicotine-induced increase in accumbal dopamine release. Concurrent intrategmental infusion of 2-amino-5-phosphonopentanoic acid and nicotine decreased nicotine-induced dopamine release in the nucleus accumbens. These results indicate that the stimulatory action of nicotine on the mesolimbic dopamine system is to a considerable extent mediated via stimulation of N-methyl-D-aspartate receptors within the ventral tegmental area.  相似文献   

16.
A single microinjection of the cholinergic agonist carbachol into the feline caudolateral parabrachial nucleus produces an immediate increase in state-independent ipsilateral ponto-geniculooccipital waves, followed by a long-term rapid eye movement sleep enhancement lasting 7-10 days. Using retrogradely-transported fluorescent carbachol-conjugated nanospheres and choline acetyltransferase immunohistochemistry, afferent projections to this injection site for long-term rapid eye movement sleep enhancement were mapped and quantified. Six regions in the brain stem contained retrogradely-labelled cells: the raphe nuclei, locus coeruleus, laterodorsal tegmental nucleus, pedunculopontine tegmental nucleus, parabrachial nucleus, and the pontine reticular formation. The retrogradely-labelled (rhodamine+) cells in the pontine reticular formation and pedunculopontine tegmental nucleus contributed the predominant input to the parabrachial nucleus injection site (34.3 +/- 5.3% and 28.4 +/- 5.6%, respectively), compared to the laterodorsal tegmental nucleus (5.8 +/- 3.8%), parabrachial nucleus (13.5 +/- 3.1%), raphe nuclei (12.9 +/- 2.7%), and locus coeruleus (5.1 +/- 2.4%). By comparison with findings of afferent input to the induction site for short-latency rapid eye movement sleep in the anterodorsal pontine reticular formation, the parabrachial nucleus injection site is characterized by a similar proportion of afferents, except that the raphe nuclei were found to provide more than a two-fold greater input. Retrogradely-labelled neurons quantified in these nuclear regions consisted of 21.5% double-labelled (rhodamine+/choline acetyltransferase+) cholinergic and 78.5% noncholinergic (rhodamine+/choline acetyltransferase-) cells. The pedunculopontine tegmental nucleus contributed the predominant (51.7 +/- 8.2%) cholinergic input, compared to laterodorsal tegmental nucleus (20.7 +/- 10.2%), parabrachial nucleus (23.1 +/- 7.5%), and pontine reticular formation (4.4 +/- 2.1%). A comparative analysis of the total retrogradely-labelled cells within each nuclear region which were also double-labelled showed the highest proportion in the laterodorsal tegmental nucleus (76.2 +/- 7.5%) compared to pedunculopontine tegmental nucleus (39.4 +/- 3.6%), parabrachial nucleus (37.3 +/- 2.8%), and pontine reticular formation (3.2 +/- 2.1%). These data indicate that while pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus neurons exert a powerful cholinergic influence on the injection site for long-term rapid eye movement enhancement, a major component of the afferent circuitry is non-cholinergic. Since the non-cholinergic input includes contributions from the locus coeruleus and raphe nuclei, it is probable that the caudolateral parabrachial nucleus contains cholinergic and aminergic afferent systems that participate in the long-term enhancement of rapid eye movement sleep.  相似文献   

17.
We previously demonstrated that lesions of the nucleus accumbens (NAc) core enhanced locomotion and locomotor sensitization to repeated injections of nicotine in rats (Kelsey & Willmore, 2006). In this study, we compared the effects of separate lesions of the NAc core, NAc medial shell, and basolateral amygdala on context-specific locomotor sensitization to repeated injections of 0.4 mg/kg nicotine. Electrolytic lesions of the NAc core increased locomotion, and lesions of the core (but not the shell) and the basolateral amygdala enhanced context-specific locomotor sensitization by enhancing the development of sensitization in paired rats and decreasing expression in unpaired rats relative to sham-operated rats when challenged with an injection of 0.4 mg/kg nicotine in the locomotor chambers. These data are consistent with findings that the NAc core and the basolateral amygdala share a variety of behavioral functions and anatomical connections. The findings that lesions of these structures enhance context-specific locomotor sensitization while typically impairing other reward-related behaviors also indicate that the processes underlying locomotor sensitization and reward are not identical. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
Substantial evidence suggests that pharmacological manipulations of neural serotonin pathways influence ingestive behaviors. Despite the known role of the nucleus accumbens in directing appetitive and consummatory behavior, there has been little examination of the influences that serotonin receptors may play in modulating feeding within nucleus accumbens circuitry. In these experiments, the authors examined the effects of bilateral nucleus accumbens infusions of the 5-HT1/7 receptor agonist 5-CT (at 0.0, 0.5, 1.0, or 4.0 μg/0.5 μl/side), the 5-HT? receptor agonist EMD 386088 (at 0.0, 1.0, and 4.0 μg/0.5 μl/side), or the 5-HT2C preferential agonist RO 60–0175 (at 0.0, 2.0, or 5.0 μg/0.5 μl/side) on food intake and locomotor activity in the rat. Intra-accumbens infusions of 5-CT caused a dose-dependent reduction of food intake and rearing behavior, both in food-restricted animals given 2-hr free access to Purina Protab RMH 3000 Chow, as well as in nondeprived rats offered 2-hr access to a highly palatable fat/sucrose diet. In contrast, stimulation of 5-HT? receptors with EMD 386088 caused a dose-dependent increase of intake under both feeding conditions, without affecting measures of locomotion. Infusions of the moderately selective 5-HT2C receptor agonist RO 60–0175 had no effects on feeding or locomotor measures in food-restricted animals, but did reduce intake of the fat/sucrose in nonrestricted animals at the 2.0 μg, but not the 5.0 μg dose. Intra-accumbens infusions of selective antagonists for the 5-HT? (SB 269970), 5-HT? (SB 252585), and 5-HT2C (RS 102221) receptors did not affect locomotion, and demonstrated no lasting changes in feeding for any of the groups tested. These data are the first to suggest that the activation of different serotonin receptor subtypes within the feeding circuitry of the medial nucleus accumbens differentially influence consummatory behavior. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Although cholinergic neurons in the laterodorsal and pedunculopontine tegmental nuclei have been shown to have a pivotal role in neural mechanisms of paradoxical sleep, their function during wakefulness is less understood. To examine the latter, we have recorded from "broad-spike neurons", which were distinguished by their long spike duration, in the laterodorsal tegmental nucleus of undrugged, head-restrained rats, and examined their response properties to sensory stimuli such as light touch to the tail, air puff to the face, 2 kHz pure tone and flashes of light. Broad-spike neurons from the locus coeruleus and dorsal raphe nucleus were studied for comparison; these neurons have been demonstrated to be noradrenergic and serotonergic, respectively. The broad-spike neurons in the laterodorsal tegmental nucleus have also been suggested to be cholinergic. There were two kinds of responses: (1) a simple increase or decrease in firing, reflecting an elevated level of vigilance; and (2) a phasic response composed of a single spike or brief, high frequency burst, usually diminishing or disappearing upon repetition of the stimulus. When two or more types of stimuli were effective in a neuron, they evoked responses of the same quality. Most of the dorsal raphe neurons displayed only the simple increase of firing, whereas the locus coeruleus neurons gave a phasic response with rather weak attenuation upon repetition. Compared with these, the laterodorsal tegmental neurons were heterogeneous: about one-quarter showing only a simple change of firing (half increasing, half decreasing); and two-thirds displaying phasic responses. The latter response of many neurons attenuated strongly upon repetition. The laterodorsal tegmental neurons were classified into several groups according to their spontaneous firing behavior during sleep and wakefulness, but every neuron in a group did not show the same type of response. For example, some of the neurons which were most active during paradoxical sleep and essentially silent during wakefulness decreased or stopped firing upon sensory stimulation, while others in this group had strong phasic responses. These results suggest that putative cholinergic neurons in the laterodorsal tegmental nucleus have heterogenous properties not only with respect to their spontaneous activity during sleep and wakefulness but also with respect to their response to sensory stimulation. Some of these neurons may function to induce a global attentive state in response to a novel stimulus.  相似文献   

20.
Motor activity elicited pharmacologically from the nucleus accumbens by the mu-opioid receptor agonist D-Ala-Tyr-Gly-NMePhe-Gly-OH (DAMGO) is augmented in rats sustaining dopamine depletions. GABAergic projections from the nucleus accumbens to ventral pallidum and ventral tegmental area (VTA) are involved because stimulation of GABAB receptors in the VTA (by baclofen) or GABAA receptors in the ventral pallidum (by muscimol) inhibit the motor response induced by the microinjection of DAMGO into the nucleus accumbens. The present study was done to determine which of these projections is mediating the augmented DAMGO-induced motor activity that follows 6-hydroxydopamine lesions of the nucleus accumbens. The inhibition of DAMGO-induced activation by pallidal injections of muscimol was markedly attenuated in lesioned animals, whereas the inhibition by VTA injections with baclofen was greatly enhanced. A similar switch in emphasis from pallidal to mesencephalic efferents was not observed for dopamine-induced motor activity, because muscimol microinjections inhibited the response elicited by dopamine microinjection into the nucleus accumbens in all subjects. The stimulation of mu-opioid receptors in the ventral pallidum also elicits motor activation, and this is blocked by baclofen microinjection into the VTA. However, after dopamine depletion in the nucleus accumbens, baclofen in the VTA was ineffective in blocking the motor response by DAMGO in the ventral pallidum. These data reveal that dopamine depletion in the nucleus accumbens produces a lesion-induced plasticity that alters the effect of mu-opioid receptor stimulation on efferent projections from the nucleus accumbens and ventral pallidum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号