共查询到19条相似文献,搜索用时 78 毫秒
1.
支持向量机多类分类方法 总被引:30,自引:0,他引:30
支持向量机本身是一个两类问题的判别方法,不能直接应用于多类问题。当前针对多类问题的支持向量机分类方法主要有5种:一类对余类法(OVR),一对一法(OVO),二叉树法(BT),纠错输出编码法和有向非循环图法。本文对这些方法进行了简单的介绍,通过对其原理和实现方法的分析,从速度和精度两方面对这些方法的优缺点进行了归纳和总结,给出了比较意见,并通过实验进行了验证,最后提出了一些改进建议。 相似文献
2.
网页分类是为了解决网络信息过载问题而延伸的一个热门研究领域,同时支持向量机以其出色的学习能力,在解决高维问题时表现出了特定的优势。本文在研究支持向量机和标准的免疫克隆优化算法的基础上,提出了一种改进的免疫克隆和支持向量机相结合的分类算法。标准算法中由于通过对抗体编码中某些位进行随机取反来实现抗体变异,造成搜索能力不强。该方法针对上述不足,将记忆单元和普通单元区分开来,对记忆单元定义自适应概率,从而加强在当前最优解邻域内的搜索能力,加快寻求全局最优解的速度。实验结果表明,该改进算法较其他算法具有更好的参数选择效果和更高的选择效率,是一种具有较高准确率和效率的网页分类方法。 相似文献
3.
支持向量机在网页信息分类中的应用研究 总被引:4,自引:0,他引:4
针对日益膨胀的网络信息,为方便用户准确定位所需的信息,将支持向量机(SVM)与二叉决策树结合起来进行网页信息的分类,并在构造决策支持向量机分类模型的基础上,进一步结合聚类的方法,解决多类分类问题,减少支持向量机的训练样本数,提高分类训练速度和分类准确率. 相似文献
4.
基于支持向量机的中文网页自动分类 总被引:5,自引:0,他引:5
研究了支持向量机在中文网页分类中的应用,给出了基于关键词的中文网页特征提取和选择方法,阐述了统计学习理论中的支持向理机模型及其在分类问题应用中的特点,给出了设计支持向量机分类器的二次规划学习算法。 相似文献
5.
为了进一步提高支持向量机分类的准确性和泛化能力,提出一种基于支持向量机的改进二叉树分类算法.首先介绍支持向量机的基本原理,总结了常见的多分类器分类算法及其特点,结合现有分类算法的优点,为分类器引入了不同的权值,提出二叉树改进分类算法,有效避免了常用分类算法不足.通过仿真实验,与典型的多类分类算法对比,验证该算法的有效性,为多类分类预测研究提供了一条有效的途径. 相似文献
6.
7.
网页分类技术是web数据挖掘的一个重要分支,是基于自然语言处理技术和机器学习学习算法的一个典型的具体应用。基于统计学习理论和蚁群算法理论,该文提出了一种基于支持向量机和改进蚁群算法相结合的构造网页分类器的高效分类方法,实验结果证明了该方法的有效性和鲁棒性,弥补了仅利用支持向量机对于大样本训练集收敛慢的不足,具有较好的准确率和召唤率。 相似文献
8.
网页分类技术是Web数据挖掘的基础与核心,是基于自然语言处理技术和机器学习算法的一个典型的具体应用。基于统计学习理论和蚁群算法理论,提出了一种基于支持向量机和蚁群算法相结合的构造网页分类器的高效分类方法,实验结果证明了该方法的有效性和鲁棒性,弥补了仅利用支持向量机对于大样本训练集收敛慢的不足,具有较好的准确率和召回率。 相似文献
9.
支持向量机在多类分类问题中的推广 总被引:51,自引:4,他引:51
支持向量机(SVMs)最初是用以解决两类分类问题,不能直接用于多类分类,如何有效地将其推广到多类分类问题是一个正在研究的问题。该文总结了现有主要的支持向量机多类分类算法,系统地比较了各算法的训练速度、分类速度和推广能力,并分析它们的不足和有待解决的问题。 相似文献
10.
11.
支持向量机(SVM)算法是统计学习理论中最年轻的分支。结构风险最小化原则使其具有良好的学习推广性。但在实际应用中,训练速度慢一直是支持向量机理论几个亟待解决的问题之一,这一点在SVM向多类问题领域推广时表现的尤为明显。文中将从样本分布与类别数量两方面入手,对传统的SVM多分类OAO算法进行训练时间性能上的分析,并引入分层的思想,提出传统OAO-SVMs算法的改进模型H-OAO-SVMs。通过与其他常见多分类SVMs训练时间的比较表明:改进后的H-OAO-SVMs模型具有更优的训练时间性能。 相似文献
12.
超球体多类支持向量机理论 总被引:3,自引:0,他引:3
目前的多类分类器大多是经二分类器组合而成的,存在训练速度较慢的问题,在分类类别多的时候,会遇到很大困难,超球体多类支持向量机将超球体单类支持向量机扩展到多类问题,由于每类样本只参与一个超球体支持向量机的训练.因此,这是一种直接多类分类器,训练效率明显提高.为了有效训练超球体多类支持向量机,利用SMO算法思想,提出了超球体支持向量机的快速训练算法.同时对超球体多类支持向量机的推广能力进行了理论上的估计.数值实验表明,在分类类别较多的情况,这种分类器的训练速度有很大提高,非常适合解决类别数较多的分类问题.超球体多类支持向量机为研究快速直接多类分类器提供了新的思路. 相似文献
13.
针对支持向量机SMO训练算法在遇到大规模问题时训练过慢的问题,提出了一种改进的工作集选择模型的并行算法.在该算法中,根据支持向量机训练过程中的特点,提出了限定工作集选择次数、工作集选择的过程中跳过稳定样本的策略.对该SMO算法进行并行训练,3组著名数据集的实验结果表明,该模型在保持精度的情况下,进一步提高了训练的速度. 相似文献
14.
Convergence of a Generalized SMO Algorithm for SVM Classifier Design 总被引:32,自引:0,他引:32
Convergence of a generalized version of the modified SMO algorithms given by Keerthi et al. for SVM classifier design is proved. The convergence results are also extended to modified SMO algorithms for solving -SVM classifier problems. 相似文献
15.
从样本的类空间分布和随机测试样本对每个类别的隶属度两方面考虑,对现有的分离测度进行了改进,并给出了一种基于隶属度分离测度的SVM决策树多类分类算法.实验表明,对于随机测试样本属于每个类别的概率均不相同的多类分类问题,基于隶属度分离测度的SVM决策树在与传统的SVM决策树有着基本相同的分类精度情况下,具有更快的分类速度. 相似文献
16.
中文网页分类技术是数据挖掘中一个研究热点领域,而支持向量机(SVM)是一种高效的分类识别方法,在解决高维模式识别问题中表现出许多特有的优势.提出了基于支持向量机的中文网页分类方法,其中包括对该过程中的网页文本预处理、特征提取和多分类算法等关键技术的介绍.实验表明,该方法训练数据规模大大减少,训练效率较高,同时具有较好的精确率和召回率. 相似文献
17.
提出了一个新的多类分类算法,该算法的目标是寻找[M]个相互不平行的超平面,使得第[m(m=1,2,?,M)]类的各点到第[m]个超平面的距离之和尽可能小,而其余类的所有点到该超平面的距离之和尽可能大。基于这个思想,寻求第[m]个超平面的优化模型最终可转化为一个广义特征值问题。该方法编程简单,易于实现。在数值试验部分,该算法与一些经典的基于支持向量机的多类分类算法进行比较,表明了该算法的优越性。 相似文献
18.
针对基于链接关系的网页分类算法中存在噪声邻域网页干扰分类结果的问题,提出利用网页间的相似度进行优化的方法。为不同关系的满足相似度阈值的邻域网页分别设置不同的权值,同时结合支持向量机对网页的分类结果,计算得到网页的类别。实验表明,本文算法准确率、召回率和F1值均有所提高。
相似文献
19.
中文网页分类技术是数据挖掘研究中的一个热点领域,而支持向量机(SVM)是一种高效的分类识别方法。首先给出了一个基于SVM的中文网页自动分类系统模型,详细介绍了分类过程中涉及的一些关键技术,其中包括网页预处理、特征选择和特征权重计算等。提出了一种利用预置关键词表进行预分类的方法,并详细说明了该方法的原理与实现。实验结果表明,该方法与单独使用SVM分类器相比,不仅大大减少了分类时间,准确率和召回率也明显提高。 相似文献