首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
原位合成MoSi2-30%SiC复合材料的高温蠕变行为   总被引:4,自引:0,他引:4  
研究了含30%SiC(体积分数)的热压原位合成MoSi2基复合材料及对比用的商用MoSi2与SiC混粉热压材料在1200-1400℃的压缩蠕变行为。结果表明,在60-120MPa应力条件下,原位合成复合材料的稳态蠕变速率都可维持在10^-7s^-1量级或更低的水平。高于1300℃原位合成材料的稳态蠕变速率明显低于商用混粉材料的主要原因是MoSi2/SiC相界面为纯粹的原子结合,无SiO2非晶相存在,蠕变机制为位错蠕变,MoSi2基体中的位错类型为<110>为<100>  相似文献   

2.
采用热质量分析法(TGA)和X射线衍射(XRD)对MoSi2及其复合材料的高温氧化性能、低温氧化机理和影响因素进行了研究.结果表明,40vol%SiC/MoSi2复合材料在1300℃高温等温氧化条件下具有优异的高温抗氧化性;通过提高MoSi2的纯度、添加与氧有亲和力的元素及高温预氧化形成致密的SiO2保护膜都有利于改善和提高MoSi2材料的抗低温氧化性能.  相似文献   

3.
原位合成MoSi2—SiC复合材料的高温强化   总被引:2,自引:0,他引:2  
采用高温压缩实验研究了不同体积分数SiC含量对原位合成MoSi2-SiC复合材料在1000-1400℃的屈服强度及流变应力的影响,结果表明,与单一MoSi2材料相比,复合材料的高温强度随SiC含量的增加而明显提高,高温屈服强度σy和第二相SiC粒子间距λs服从σy=σ0 kλs^-1/2关系式,结合组织结构的研究结果对其盯间障碍强化的高温强化机制进行了初步探讨。  相似文献   

4.
铌表面MoSi2高温涂层的形貌和结构研究   总被引:11,自引:1,他引:11  
用料浆熔烧法在铌基体表面制备了。MoSi2高温抗氧化涂层。利用SEM,EDS,XRD等仪器分析研究了涂层的结构、元素分布、相分布与抗氧化性能的关系。结果表明:涂层与基体之间达到了冶金结合,通过扩散形成了过渡层,涂层的复合结构有利于提高抗氧化性能,用料浆熔烧法在铌基体表面制备MoSi2涂层是可行的。在氧化环境下,MoSi2涂层能在表面自生成一层SiO2玻璃层,阻止氧的进一步扩散。经2h以上高温氧化后,Si的扩散使涂层主体中形成多孔疏松组织。涂层元素与基体发生互扩散,在界面处形成大量集中孔洞并横向贯穿,使涂层从其主体与过渡层接触的界面处发生横向内部断裂,导致涂层失效。  相似文献   

5.
MoSi2高温氧化层的微观结构   总被引:11,自引:0,他引:11  
采用SEM,TEM和XRD方法研究了MoSi2在1200-1600℃的氧化层微观结构。在1240℃以下,氧化层由SiO2和其它氧化物混合而成,致密度较差。1240-1520℃区间氧化层表面存在针状、扇状或羽状的低温石英,氧化层较薄。在1520℃以上,氧化层中含有块状、粒状或蜂巢状的方石英,氧化层致密而均匀,增强了材料的抗氧化性能。  相似文献   

6.
MoSi2可在各种基材上作涂层,以用作抗高温腐蚀的保护层。MoSi2涂层一般用等离子喷射法制备。真空下等离子喷涂(VPS)的涂层孔隙率和氧含量较低,但涂层表面没有形成保护性SiO2层。这层SiO2可避免整块MoSi2的粉化。大气下等离子喷涂(APS)的涂层孔隙率和氧含量都较高。两种技术制备的涂层中都发现了Mo5Si3。高速氧燃料热喷涂(HVOF)是制备MoSi2涂层的另一种热喷涂方法。德国研究人员在不同温度下用HVOF喷涂了未强化和SiC或Al2O3强化的MoSi2涂层并检验了他们的氧化行为。由于块状MoSi2在300℃~600℃之间易于粉化,为了评估涂层抗…  相似文献   

7.
综述了MoSi2作为C/C复合材料和难熔金属的高温抗氧化涂层的氧化性能的研究进展,比较研究了MoSi2高温抗氧化涂层的制备工艺,提出了MoSi2涂层技术的未来发展方向,即研发高温长寿命高可靠性抗氧化涂层、超高温抗氧化涂层,以满足航空发动机及航天飞机在恶劣工况条件下的使用要求.  相似文献   

8.
MoSi2以其优异的性能在材料领域应用日益广泛,尤其是作为高温结构材料使用极具发展潜力.本文概述了国内外MoSi2及其复合材料的应用现状,着重介绍了MoSi2基高温结构材料在MoSi2改性、增强体、合成方法及力学性能等方面的研究现状及其发展趋势.  相似文献   

9.
综述了MoSi2基复合材料作为航空航天用高温结构材料的高温和低温抗氧化性能的研究进展,探讨了该复合材料的氧化机理和抗低温氧化之方法,提出了MoSi2基复合材料的未来发展方向.  相似文献   

10.
以Mo粉和Si粉为原料,以NH4Cl为添加剂,通过自蔓延高温燃烧合成(SHS)的方法制备了高纯度的MoSi2材料.化学分析、荧光半定量分析和感应耦合等离子光谱仪(ICP-AES)分析结果表明,添加剂NH4Cl的加入能够对自蔓延燃烧合成的MoSi2粉体起到明显的净化效果.并通过XRD和SEM对燃烧合成产物的物相组成和形貌进行了分析,发现NH4Cl的加入对合成产物的物相组成没有明显影响,但可以大大降低合成产物的晶粒尺寸和团聚程度.  相似文献   

11.
纳米ZrO2颗粒增强MoSi2基复合材料的显微组织和力学性能   总被引:1,自引:0,他引:1  
利用放电等离子烧结法(SPS)制备了MoSi2-ZrO2复合材料,研究了纳米ZrO2颗粒数量对MoSi2基复合材料显微组织和力学性能的影响.结果表明,在MoSi2基体中加入纳米ZrO2颗粒,能细化基体晶粒,改善力学性能;随着ZrO2含量的增加,复合材料的抗压强度随之增加,硬度和断裂韧性先增后减;当ZrO2含量为20%时,室温抗压强度、硬度以及断裂韧度分别为1857 MPa、1235 HV0.5和6.8 MPa·m1/2,与纯MoSi2相比,分别提高102%、19.8%和116%;经500℃氧化300 h后,复合材料氧化后的质量增加量是纯MoSi2的1/10左右.  相似文献   

12.
探讨了加入合金元素W对MoSi2材料组织和性能的影响.通过热压工艺制备T(Mo1-x,Wx)Si2合金试样.对合金试样的物相组成、断口形貌、微区成分及显微组织进行了分析,并对合金的硬度、力学性能及致密度进行了分析测试.结果表明,其主要物相为MoSi2、WSi2、W5Si3及少量的Mo4.8 Si3C0.6;合金元素W的加入细化了晶粒,强化了基体;使MoSi2复合材料的硬度明显提高,且随着W元素的增多,材料的抗压强度、硬度提高;相对密度呈先增后减的趋势,当Mo:W为6:4时,材料的致密度最高,达到95.32%;合金主要以穿晶和沿晶的脆性断裂为主,合金韧性没有明显改善.  相似文献   

13.
利用机械合金化(MA)方法合成MoSi2纳米先驱粉体,并对碳纳米管(CNT)进行超声分散,将MoSi2和CNT湿法球磨混合后,采用热压烧结方法制备了CNT/MoSi2复合材料。结果表明,Mo-Si粉末按原子比1:2混合,以转速510r/min球磨24h得到杂质含量较低的MoSi2纳米粉体。烧结后材料的相组成分析结果显示,不含CNT的MoSi2材料主要为MoSi2相,同时含有少量Mo5Si3;添加CNT后,复合材料中新增了少量的SiC,Mo5Si3的含量也比非增强MoSi2中高。CNT/MoSi2复合材料强度和韧性较纯MoSi2材料均有提高,含2.5%(质量分数,下同)CNT复合材料的抗弯强度提高了72%,添加I%CNT复合材料的断裂韧性提高T43%。对CNT/MoSi2复合材料显微结构分析发现,CNT细化材料晶粒,CNT的拔出,CNT使裂纹偏转、分支和桥联等机制综合作用提高了复合材料的韧性。细晶强化和弥散强化作用提高了材料强度。  相似文献   

14.
熔渗反应法制备MoSi2-SiC复合材料性能的影响因素   总被引:1,自引:0,他引:1  
用熔渗反应无压烧结技术制备了MoSi2-SiC复合材料,对制备过程的影响因素进行了分析。研究结果表明:在渗硅温度为1450℃时,反应生成颗粒细小、弥散分布的SiC相,从而使得材料具有较高的抗弯强度;当渗硅温度升高至1750℃时,生成的SiC相发生再结晶长大,使得材料强度下降。成型压力对熔渗硅样品强度影响不大。MoSi2-SiC复合材料的抗弯强度随SiC相含量的增加在增强相含量为40%时存在一极大值,这是由于当SiC数量超过40%后,SiC粒子的团聚、长大使弥散强化作用降低,从而使材料的断裂强度降低;复合材料电阻率随第二相含量的增加而增加。  相似文献   

15.
在分析MoO3-Al-Si体系SHS反应热力学的基础上,探讨了SHS-熔铸工艺制备MoSi2/Mo原位复合材料的可能性,研究了复合材料的原位形成过程。结果表明,MoO3-Al-Si体系的绝热燃烧温度高于4119K,能使合成产物熔化;在液态合成产物中,熔融的Al2O3能与液态的Mo和Si分离,从而可获得较纯净的Mo-Si高温熔体;Mo-Si高温熔体在凝固过程中原位形成MoSi2/Mo复合材料,而且随着复合材料中Mo含量的增加,MoSi2颗粒的尺寸减小。因此,通过SHS-熔铸工艺可以同步实现MoSi2/Mo复合材料的原位合成与液态成型一体化。  相似文献   

16.
以Si粉和Mo粉为原料采用机械合金化的方法制备了金属间化合物MoSi2。研究了球磨过程中球磨时间、球料比、转速及不同球磨机类型对机械合金化产物的影响。利用SEM观察粉末表面形貌及颗粒大小,利用XRD测定物相结构。研究结果表明,当球磨机提供的能量达到相变所需的能量时,粉末中有MoSi2相生成。通过XRD分析可以看出,随着球磨时间的延长,合金化程度逐渐提高:球磨转速的提高有助于生成MoSi2:较高的球料比可以使生成MoSi2的时间提前。在机械球磨过程中,粉末的颗粒尺寸经历了一个由较粗且不规则、不均匀粉末向细小、均匀、接近球形粉末,然后团聚增大的转化过程。此外,还研究了助磨剂对合金化产物的影响,结果表明助磨剂的加入并不能促进MoSi2的生成,但可以对颗粒的细化起到一定作用。  相似文献   

17.
MoSi2和WSi2的价电子结构及性能分析   总被引:2,自引:0,他引:2  
彭可  易茂中  冉丽萍 《金属学报》2006,42(11):1125-1129
根据固体与分子经验电子理论,对MoSi2和wSi2的价电子结构进行了定量的分析,通过键距差方法计算了MoSi2和WSi2晶体中各键上的共价电子数.结果表明:在MoSi2和WSi2晶体中,沿(331)位向分布的Mo-Si和W-Si原子键最强,这些键上的共价电子数和键能分别影响化合物的硬度和熔点.晶体中晶格电子数影响其导电性和塑性,MoSi2晶体中含有较高密度的晶格电子,因此MoSi2的导电性和塑性比WSi2好.并从键络分布的不均匀性解释了MoSi2和WSi2脆性产生的原因.  相似文献   

18.
TiC-TiB2增强MoSi2复合材料的力学性能及抗氧化行为   总被引:3,自引:1,他引:3  
以MoSi2、Ti和B4C粉为原料,采用高温热压技术合成不同体积分数TiC-TiB2增强MoSi2复合材料,研究TiC-TiB2颗粒对MoSi2基体材料显微组织、力学性能和高温氧化性能的影响.结果表明:30%TiC-TiB2/MoSi2(体积分数)复合材料的抗弯强度和维氏硬度分别达到468.3 MPa和17.07 GPa,比纯MoSi2的分别增加了63.2%和83.5%.随着TiC-TiB2体积分数的增加,复合材料的断裂方式由以沿晶断裂为主向以穿晶断裂为主转变,强化机制是细晶强化和弥散强化.在800~1 200 ℃氧化192 h时,30%TiC-TiB2复合材料的增质是10%TiC-TiB2复合材料的2.38~3.23倍.氧化层中没有发现低熔点的B2O3,而TiO2和SiO2的存在使材料具有较好的抗氧化性.  相似文献   

19.
提高二硅化钼发热体力学性能和高温塑性的研究   总被引:2,自引:0,他引:2  
从二硅化钼合成、粉料粒度、添加剂选择、烧结工艺等方面研究提高二硅化钼发热体的力学性能和高温塑性。  相似文献   

20.
采用在常规模压生坯中浸渗Al的方法,研究了MoSi2+Mo反应熔渗Al后的显微组织和力学性能的变化情况.研究表明MoSi2坯体在1350℃反应浸渗Al可使抗弯强度高达737 MPa,其断裂韧性也可达到4.3 MPa·m1/2,远远高于热压单相材料;然而其相成分中存在残余的Si相和Al相将会阻碍其高温应用;在MoSi2坯体中加入Mo粉可以消除残余硅相;经过计算,当Mo添加量为15%(质量分数,下同)时,可以完全消除Si相,并使Al相达到最低,而其强度并不降低.同时SEM观察表明,添加15%Mo后其断口显示晶粒间絮状夹层变成颗粒状黑色相面积较未加入Mo粉时减小.从而进一步证实添加15%Mo产生的组织变化将有利于该材料的高温力学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号