首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Yunnan pine caterpillar Dendrolimus houi Lajonquière is a serious defoliator of coniferous forests in southwestern China. Gas chromatography–electroantennography (GC–EAG) analyses of extracts of female sex pheromone glands of D. houi moths revealed the presence of three compounds eliciting antennal responses. These were identified as (5E,7Z)-5,7-dodecadien-1-ol (E5,Z7-12:OH), (5E,7Z)-5,7-dodecadien-1-yl acetate (E5,Z7-12:OAc), and (5E,7Z)-5,7-dodecadienal (E5,Z7-12:Ald) by comparison of their GC retention indices, mass spectra, and EAG activities with those of synthetic standards. Average amounts of E5,Z7-12:OH, E5,Z7-12:OAc, and E5,Z7-12:Ald per calling virgin D. houi female were 14.7 ± 12.9 ng (± SD), 5.8 ± 5.4 ng, and 0.8 ± 1.4 ng, respectively, in a ratio of 100:39.7:5.6. These three components were also collected from the headspace of calling virgin female moths by solid-phase microextraction (SPME). In addition, trace quantities of (Z)-5-dodecen-1-ol (Z5-12:OH), (5Z,7E)-5,7-dodecadien-1-ol (Z5,E7-12:OH), (5E,7E)-5,7-dodecadien-1-ol (E5,E7-12:OH), (5Z,7E)-5,7-dodecadien-1-yl acetate (Z5,E7-12:OAc), (5Z,7Z)-5,7-dodecadien-1-yl acetate (Z5,Z7-12:OAc), and (5E,7E)-5,7-dodecadien-1-yl acetate (E5,E7-12:OAc) were tentatively identified in female pheromone gland extracts by selected ion monitoring GC-MS. Field trapping experiments showed that E5,Z7-12:OH, E5,Z7-12:OAc, and E5,Z7-12:Ald were essential for attraction of male D. houi moths. Traps baited with a 20:1:1 blend (alcohol/acetate/aldehyde) loaded on gray rubber septa were as effective as traps baited with virgin female moths. The optimum ratio of acetate to aldehyde was 1:1, and this ratio was more critical than the ratio of either compound to the alcohol. This represents the first example of (E,Z)-isomers in pheromone blends of Dendrolimus species.  相似文献   

2.
Five candidate pheromone components were identified by analyzing pheromone gland extracts by gas chromatography (GC), coupled GC-electroantennographic detection (EAD), and coupled GC-mass spectrometry (MS): (E)-11-hexadecenol(E11–16 : OH), (Z)-11-hexadecenol (Z11–16 : OH),(E)-11-hexadecenal, (E)-11-hexadecenyl acetate, and (Z)-3,(Z)-6,(Z)-9-tricosatriene (Z3,Z6,Z9–23 : Hy). In electroantennogram (EAG) recordings, synthetic E11–16 : OH elicited stronger antennal responses at low doses than other candidate pheromone components. Field tests demonstrated that synthetic E11–16 : OH as a trap bait was effective in attracting males, whereas addition of Z11–16 : OH inhibited the males' response. Z3,Z6,Z9–23 : Hy strongly enhanced attractiveness of E11–16 : OH, but was not attractive by itself. A pheromone blend with synergistic behavioral activity of an alcohol (E11–16 : OH) and hydrocarbon (Z3,Z6,Z9–23 : Hy) component is most unusual in the Lepidoptera. The synthetic two-component pheromone is approximately 60 times more attractive than the female-produced blend and might facilitate the control of this pest.  相似文献   

3.
Analyses of extracts of pheromone glands and of volatiles from calling female fall armyworm moths,Spodoptera frugiperda (J.E. Smith), revealed the presence of the following compounds: dodecan-1-ol acetate, (Z)-7-dodecen-1-ol acetate, 11-dodecen-1-ol acetate, (Z)-9-tetradecenal, (Z)-9-tetradecen-1-ol acetate, (Z)-11-hexadecenal, and (Z)-11-hexadecen-1-ol acetate. The volatiles emitted by calling females differed from the gland extract in that the two aldehydes were absent. Field tests were conducted with sticky traps baited with rubber septa formulated to release blends with the same component ratios as those emitted by calling females. These tests demonstrated that both (Z)-7-dodecen-1-ol acetate and (Z)-9-tetradecen-1-ol acetate are required for optimum activity and that this blend is a significantly better lure than either virgin females or 25 mg of (Z)-9-dodecen-1-ol acetate in a polyethylene vial, the previously used standard. Addition of the other three acetates found in the volatiles did not significantly increase the effectiveness of the two-component blend as a bait for Pherocon 1C or International Pheromones moth traps.Mention of a commercial or proprietary product does not constitute an endorsement by the USDA.  相似文献   

4.
The female-produced sex attractant pheromone of Coloradia velda has been identified by a combination of analytical methods and field tests as a blend of (10E,12Z)-hexadecadien-1-yl acetate (10E,12Z–16:Ac), (10E,12E)-hexadecadien-1-yl acetate (10E,12E–16:Ac), and (10E,12Z)-hexadecadien-1-ol (10E,12Z–16:OH) in a 10:1:0.33 ratio, respectively. The corresponding aldehyde (10E,12Z–16:Ald) was also found in extracts of female pheromone glands, but in blends with 10E,12Z–16:Ac and 10E,12E–16:Ac at low doses did not significantly increase the attractiveness of baits to male moths.  相似文献   

5.
The behavioral responses of Lobesia botrana males to calling females, pheromone gland extracts, and synthetic sex pheromones were recorded in a wind tunnel. Gland extracts and synthetic pheromones were released from a pheromone evaporator. The numbers of males reaching the source and their flight tracks in response to calling females and pheromone gland extracts were compared to those of synthetic blends. Upwind flights to natural sex pheromone were straighter and faster than to a three-component blend of (E)-7,(Z)-9-dodecadienyl acetate (E7,Z9–12:Ac), (E)-7,(Z)-9-dodecadien-1-ol (E7,Z9–12:OH), and (Z)-9-docecenyl acetate (Z9–12:Ac) (100:20:5). The optimum ratio of E7,Z9–12:OH and Z9–12:Ac to E7,Z9–12:Ac was found to be 5% and 1%, respectively. An additional seven compounds identified in the sex pheromone gland were investigated for their biological activity. Two unsaturated acetates, i.e., (E)-9-dodecenyl acetate (E9–12:Ac) and 11-dodecenyl acetate (11–12:Ac), increased the number of males reaching the source as well as straightness, linear velocity, and decreased the track angle of upwind flight. Optimum response was obtained by releasing 10 pg/min E7,Z9–12:Ac in a mixture with 0.5 pg/min E7,Z9–12:OH, 0.1 pg/min Z9–12:Ac, 0.1 pg/min E9– 12:Ac and 1 pg/min 11-12–Ac. The saturated acetates previously identified in the female glands were biologically inactive.  相似文献   

6.
The sex attractant pheromone blend of Hemileuca maia (Lepidoptera: Saturniidae) from the vicinity of Baton Rouge, Louisiana, has been identified. The major component of the blend is (E10,Z12)-hexadeca-10,12-dienal (E10,Z12–16:Ald), in combination with the minor components (E10,Z12)-hexadeca-10,12-dien-1-ol (E10,Z12–16:OH), and (E10,Z12)-hexadeca-10,12-dien-1-yl acetate (E10,Z12–16:Ac). Ratios of the compounds in extracts of female pheromone glands varied around a mean of 100:7.4:6.3. None of the three components were attractive to male moths when tested as single components. Several other compounds were tentatively identified from female pheromone gland extracts, including E10,E12–16:Ald, E10,E12–16:OH, and E10,E12–16:Ac, but addition of these components, either alone or in combination, at biologically relevant rates, did not significantly increase the attractiveness of lures. The saturated analogs, hexadecanal, hexadecanol, and hexadecyl acetate, also were identified in gland extracts, but had no apparent effect as pheromone components.  相似文献   

7.
Extracts of female sex pheromone gland of the carpenterworm moth, Holcocerus hippophaecolus Hua, a pest of sandthorn, Hippophae rhamnoides L. were found to contain (E)-3-tetradecenyl acetate (E3-14:Ac), (Z)-3-tetradecenyl acetate (Z3-14:Ac), (Z)-7-tetradecenyl acetate (Z7-14:Ac), the corresponding alcohols, E3-14:OH, Z3-14:OH, Z7-14:OH, and (E)-9-tetradecenyl acetate (E9-14:Ac). Electroantennographic (EAG) analysis of these chemicals and their analogs demonstrated that Z7-14:Ac elicited the largest male EAG response, followed by E3-14:Ac. In field trials, traps baited with either Z7-14:Ac or E3-14:Ac alone caught no male moths, whereas a combination of these two components in a 1:1 ratio caught more males than control traps. Addition of Z7-14:OH and Z3-14:OH or the alcohols plus E9-14:Ac did not enhance trap catches. We conclude that the sex pheromone of H. hippophaecolusis composed of Z7-14:Ac and E3-14:Ac. Optimal ratios and doses of these two components, and the possible role of other minor components, remain to be determined.  相似文献   

8.
Three electroantennogram (EAG)-active components were detected by gas chromatography coupled to an electroantennographic detector (GC–EAD) analysis of a hexane extract of the pheromone glands of the persimmon fruit moth, Stathmopoda masinissa. These compounds were identified as (4E,6Z)-4,6-hexadecadienal (E4,Z6-16:Ald) and the corresponding acetate (E4,Z6-16: OAc) and alcohol (E4,Z6-16:OH) by mass spectral, GC retention time (RT), and microchemical test data. The characteristic base peak of the aldehyde at m/z 84 provided a crucial piece of information suggesting the possibility of a 4,6-diene structure. The (4E,6Z)-isomer elicited the strongest EAG responses among the four geometrical isomers of each synthetic 4,6-hexadecadienyl compound. In a laboratory bioassay, only E4,Z6-16:OAc elicited male moth behavioral activity significantly different from the control; the activity of the acetate was not affected by addition of the aldehyde and alcohol. A preliminary field trial confirmed that E4,Z6-16:OAc as a single component attracted male moths. The possible roles of E4,Z6-16:Ald and E4,Z6-16:OH as components of lures for field use remain to be determined.  相似文献   

9.
Electroantennogram (EAG) responses of maleRhopobota naevana (Hübner), the blackheaded fireworm, to all of the monoene straightchain 12- and 14-carbon alcohols and acetates implicated (Z)-11-tetradecenl-1-ol (Z11–14OH) and its acetate (Z11–14Ac) as sex pheromone components.Z11–14Ac produced the strongest EAG response of all compounds tested. Gas chromatography-mass spectrometry (GC-MS) analysis of extract of female sex pheromone glands (SPG) confirmed the presence ofZ11–14OH (125 pg/female) andZ11–14Ac (600 pg/female) (all other monoenes had different retention times). In field tests, traps baited withZ11–14OH alone captured males, but traps baited withZ11–14Ac alone did not. Traps baited with a combination ofZ11–14OH andZ11–14Ac in various ratios did not produce better trap catches thanZ11–14OH alone. (Z)-9-Dodecen-1-ol acetate (Z9–12Ac), reported by others to be a field attractant, did not produce trap catch in our tests, but in combination withZ11–14 OH (982 in septa corresponding to 95:5 in vapor,Z11–14OH toZ9–12AC) produced a sevenfold increase in catch overZ11–14OH alone. IfZ9–12AC had been present in extract of SPG at 2–5% ofZ11–14OH, it would not have been detected in our GC-MS experiment. Rhopobota naevana (Hübner) Lepidoptera: Tortricidae: Olethreutinae.  相似文献   

10.
The rice looper,Plusia festucae, is a defoliator of the rice plant. Chromatographic behavior, chemical reactions, and GC-MS analyses of the female sex pheromone revealed that the main component was (Z)-5-dodecenyl acetate (Z5–12: OAc, component I). The GC-MS analysis also indicated that the pheromone gland extract included another three monounsaturated components, (Z)-5-dodecen-l-ol (Z5–12: OH, component II), (Z)-7-tetradecenyl acetate (Z7–14: OAc, component III), and (Z)-7-tetradecen-l-ol (Z7–14: OH, component IV) in the following ratio: I:II:III:IV=100:6:15:1. In a paddy field, the mixture of synthetic I, II, and III in a ratio of 100:6:15 showed stronger attractancy than the virgin female, while the role of IV was unknown.  相似文献   

11.
Gas chromatographic–electroantennographic detection (GC-EAD) analyses of pheromone gland extracts of female nettle caterpillars, Setora nitens, revealed four compounds that consistently elicited responses from male moth antennae. Retention indices on three fused silia columns (DB-5, DB-23, and DB-210) of two EAD-active compounds were almost identical to those of (E)-9-dodecenal (E9–12 : Ald) and (E)-9,11-dodecadienal (E9,11–12 : Ald), two pheromone components previously identified in congeneric Setothosea asigna. However, comparative GC, GC-EAD, and GC-mass spectrometry of extracted S. nitens compounds and authentic standards revealed that the candidate pheromone components were (Z)-9-dodecenal (Z9–12 : Ald) and (Z)-9,11-dodecadienal (Z9,11–12 : Ald). The two other EAD-active compounds in pheromone gland extracts proved to be the corresponding alcohols to these aldehydes. In field-trapping experiments in Tawau, Malaysia, synthetic Z9–12 : Ald and Z9,11–12 : Ald at a 1 : 1 ratio, but not singly, attracted male S. nitens. Attractiveness of these two aldehydes could not be enhanced through the addition of their corresponding alcohols. Whether these differences in pheromone biology and chemistry between S. nitens and S. asigna are sufficient to prevent cross-attraction of heterospecific males or whether nonpheromonal mechanisms are required to maintain reproductive isolation is currently being studied.  相似文献   

12.
Differences were found in the pheromonally mediated mate location systems of two subspecies of Hemileuca electra, H. electra electra (Hee) and H. e. mojavensis (Hem), from southern California. Hem female pheromone gland extracts contained eight times as much (10E,12Z)-hexadeca-10,12-dienal (E10,Z12–16:Ald) and half as much hexadecyl acetate (16:Ac) as Hee extracts. Relative amounts of the other major component of the pheromone blends, (10E,12Z)-hexadeca-10,12-dien-1-ol (E10,Z12–16:OH) did not differ between the two subspecies. In coupled gas chromatography–electroantennogram studies, responses of male antennae to 1:1:1 mixtures of the three principal components (E10,Z12–16:Ac, E10,Z12–16:OH, E10,Z12–16:Ald) also differed, with Hem antennae producing significantly larger responses to E10,Z12–16:Ald and significantly smaller responses to 10E,12Z–16:Ac than Hee. In field trials, male Hem were attracted to Hem females in preference to Hee females. Males of a second species, H. burnsi, which is sympatric with Hem but not Hee, also were attracted to females of Hee transported to their range. Field tests of blends of synthesized pheromone components confirmed that male Hem preferred E10,Z12–16:Ald ratios of 10–100% of the major component, E10,Z12–16:Ac, whereas males of Hee and H. burnsi responded optimally to ratios of 0.3–1% E10,Z12–16:Ald to E10,Z12–16:Ac. 16:Ac added to lures increased attraction of Hee but not Hem males. The data presented are consistent with reproductive character displacement, whereby the Hem subspecies has modified its pheromone-based mating system to reduce interference from sympatric H. burnsi.  相似文献   

13.
The sex pheromone of the red banded mango caterpillar, Deanolis sublimbalis (Lepidoptera: Crambidae), a serious pest of the mango Mangifera indica (Anacardiaceae) in India and Southeast Asia and a recent invader into northern Australia, has been identified. Three candidate compounds were identified from pheromone gland extracts of female moths, using gas chromatography (GC), GC-electroantennographic detection and GC-mass spectrometric analyses, in conjunction with dimethyldisulfide derivatization. Field bioassays established that both (Z)-11-hexadecenal (Z11-16:Ald) and (3Z,6Z,9Z)-tricosatriene (3Z,6Z,9Z-23:Hy) were required for attraction of male D. sublimbalis moths, and 1,000 μg of a 1:1 mix of Z11-16:Ald and 3Z,6Z,9Z-23:Hy was more attractive to male moths than caged virgin females. However, the binary blend was only attractive when the isomeric purity of the monounsaturated aldehyde was >99%, suggesting that the (E)-isomer was inhibitory. Although (Z)-11-hexadecen-1-ol (Z11-16:OH) was tentatively identified in gland extracts, the addition of this compound to the binary blend did not increase the numbers of moths captured. The pheromone can now be used in integrated pest management strategies. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
The sex pheromone of the South American potato tuber mothSymmetrischema tangolias (syn.:Symmetrischema plaesiosema) was identified as a 2:1 mixture of (E,Z)-3,7-tetradecadien-1-ol acetate and (E)-3-tetradecen-1-ol acetate by means of dual-column GC, EAG, GC-EAD, GC-MS, NMR, and wind-tunnel bioassays. (Z)-5-Tetradecen-1-ol acetate and (Z)-7-tetradecen-1-ol acetate were also identified in the pheromone gland extract. MaleS. tangolias were able to detect these acetates (EAG), but their addition to the two-component sex pheromone did not improve attractiveness. Field trials in Cajamarca and Cusco, Peru, showed that traps baited with the synthetic sex pheromone were able to catch large numbers of maleS. tangolias.  相似文献   

15.
Studies to determine possible differences in the pheromone communication system of three different populations of the corn stalk borer Sesamia nonagrioides (Lef.) in France, Spain, and Greece were carried out. The two main pheromone components (Z)-11-hexadecenyl acetate (Z11–16:Ac) and (Z)-11-hexadecenol (Z11–16:OH), were detected in all analyses with very small differences in the three populations. Among the minor components, analyzed by GC-MS on concentrated gland extracts from French and Greek origin females, (Z)-11-hexadecenal (Z11–16:Ald) was detected in minor amounts. Wind-tunnel and field studies revealed similar a male response in the three populations to pheromone glands extracts and synthetic pheromone regardless of the female/male origin. The results do not support the assumption of the existence of different pheromone types of the corn stalk borer S. nonagrioides due to geographic isolation.  相似文献   

16.
Two Melittini species, Macroscelesia japona and M. longipes (Lepidoptera: Sesiidae), are native to Japan, but occupy different localities as their host plants seldom grow together. The contents of the sex pheromone gland of adult females of both species, obtained after rearing larvae collected from the field, were investigated by gas chromatograph-electroantennogram detection (GC-EAD) and gas chromatograph-mass spectrometry (GC-MS) analyses. Two GC-EAD-active components were found in a crude extract of M. japona female pheromone gland, and identified as (2E,13Z)-2,13-octadecadien-1-ol (E2,Z13-18:OH) and (2E,13Z)-2,13-octadecadienal (E2,Z13-18:Ald). The average ratio of these two components was about 1:10. In the field, M. japona males were attracted to traps baited with E2,Z13-18:Ald alone, but the strongest attraction was observed with a 1:100 mixture of E2,Z13-18:OH and E2,Z13-18:Ald. The same two components were found in extracts of M. longipes females, but in a markedly different ratio. Male M. longipes were attracted most strongly to lures containing a 20:1 mixture of E2,Z13-18:OH and E2,Z13-18:Ald, although some males were also attracted to lures with E2,Z13-18:OH alone. Although the two species do not generally occur in sympatry, our data indicate that, in the event of overlap, cross attraction of the two species is unlikely.  相似文献   

17.
When electroantennographic responses of maleYponomeuta malinellus Zeller to model compounds were determined at dosages of 0.3–30 ng, the strongest responses were obtained from (Z)-9-dodecen-1-ol acetate (Z9–12Ac). Also, strong responses were obtained from (Z)-11-tetradecenal (Z11–14A1) and (Z)-11-tetradecen-1-ol (Zl1–14OH). At a dosage of 0.3 ng,Z11–14A1 produced a stronger response thanZ11–14OH, while at a dosage of 30 ng,Z11–14OH andZ11–14A1 produced equal responses. Gas chromatographic and mass spectral analysis of extracts of female sex pheromone glands showed the presence ofZ9–12Ac, tetradecan-1-ol (14OH), (E)-11-tetradecen-1-ol (E11–14OH),Z11–14OH, hexadecan-1-ol, and hexadecan-1-ol acetate in a ratio of 0.62003710014035. In field tests,Z9–12Ac andZ11–14OH together were required for trap catch, and addition ofZ11–14A1,E11–14OH, 14OH, or (Z)-11-tetradecen-1-ol acetate did not increase catch. Ratios in rubber septa of 0.599.5 to 1.598.5 (Z9–12 Ac/Z11–14OH) captured the most males and captures were statistically equivalent for dosages of 10–1000 g/rubber septum. Traps baited with the synthetic lure produced better catches than those baited with females.Lepidoptera: Yponomeutidae.  相似文献   

18.
Analysis of sex pheromone glands from individual female soybean looper moths showed that in addition to the previously identified main component (Z)-7-dodecenyl acetate, the compounds dodecyl acetate, 11-dodecenyl acetate, (Z)-7-dodecenyl propionate, and (Z)-7-dodecenyl butanoate were also produced. Two of the components, 12OAc and 11–12OAc, were not detected in a single analysis of female effluvium. Flight-tunnel tests showed that the five-component and three-component blends were equal to each other and to a female extract (> 80% source contacts) and that the mixtures were superior toZ7–12OAc alone. Field tests indicated that the five-component blend was significantly more attractive thanZ7–12OAc alone at a dosage of 1 mg, but that the blend was only slightly better at 3 mg.  相似文献   

19.
In field experiments in the Okanagan Valley, British Columbia, the pheromone blend of (11Z)-tetradecen-1-ol acetate (Z11-14:OAc), (11E)-tetradecen-1-ol acetate (E 11-14:OAc), (9Z)-tetradecen-1-ol acetate (Z9-14:OAc) and dodecan-1-ol acetate (12: OAc) at a 1006421 ratio (western FTLR blend) attracted significantly more male fruit-tree leaf roller (FTLR),Archips argyrospilus (Walker), than did the previously reported four-component blend and modifications thereof. Addition of (11Z)-tetradecen-1-ol (Z11-14:OH) to the western FTLR blend in a ratio of 4% relative toZ11-14: OAc further significantly enhanced attraction. Compounds were identified and their ratio determined by coupled gas chromatographic-electroantennographic (GC-EAD) and coupled GC-mass spectrometric analyses of female FTLR pheromone gland extracts and by retention index calculations of candidate pheromone components. Determination and use of geographically specific pheromonal blends may be required for optimal, semiochemical-based biorational control of FTLR and other lepidopteran orchard pests.  相似文献   

20.
Analysis of sex pheromone gland extracts and volatile pheromone components collected from the calling female southern armyworm,Spodoptera eridania (Cramer), by high-resolution capillary gas chromatography and mass spectroscopy indicated that a number of 14-carbon mono- and diunsaturated acetates and a monounsaturated 16-carbon acetate were produced. Gland extracts also indicated the presence of (Z)-9-tetradecen-1-ol. However, this compound was not found in collections of volatiles. Field trapping studies indicated that the volatile blend composed of (Z)-9-tetradecen-1-ol acetate (60%), (Z)-9-(E)-12-tetradecadien-1-ol acetate (17%), (Z)-9-(Z)-12-tetradecadien-1-ol acetate (15%), (Z)-9-(E)-11-tetradecadien-1-ol acetate (5%), and (Z)-11-hexadecen-1-ol acetate (3 %) was an effective trap bait for males of this species. The addition of (Z)-9-tetradecen-1-ol to the acetate blends tested resulted in the capture of beet armyworm,S. exigua (Hubner), males which provides further evidence that the alcohol is a pheromone component of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号