首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The bacteriocin-producing strain Enterococcus faecium ST5Ha was isolated from smoked salmon and identified by biomolecular techniques. Ent. faecium ST5Ha produces a pediocin-like bacteriocin with activity against several lactic acid bacteria, Listeria spp. and some other human and food pathogens, and remarkably against HSV-1 virus. Bacteriocin ST5Ha was produced at high levels in MRS broth at 30 °C and 37 °C, reaching a maximum production of 1.0 × 109 AU/ml, checked against Listeria ivanovii ATCC19119 as target strain and surrogate of pathogenic strain Listeria monocytogenes. The molecular weight of bacteriocin ST5Ha was estimated to be 4.5 kDa according to tricine-SDS-PAGE data. Ent. faecium ST5Ha harbors a 1.044 kb chromosomal DNA fragment fitting in size to that of pediocin PA-1/AcH. In addition, the sequencing of bacteriocin ST5Ha gene indicated 99% of DNA homology to pediocin PA-1/AcH. The combined application of low levels (below MIC) of ciprofloxacin and bacteriocin ST5Ha resulted in a synergetic effect in the inhibition of target strain L. ivanovii ATCC19119. Bacteriocin ST5Ha displayed antiviral activity against HSV-1, an important human pathogen, with a selectivity index of 173. To the best of our knowledge, this is the first report on Ent. faecium as a potential producer of pediocin-like bacteriocin with antiviral activity.  相似文献   

2.
This work aimed to investigate the influence of physicochemical properties and prior mode of growth (planktonic or sessile culture) on attachment of 13 Campylobacter jejuni strains and 5 Campylobacter coli strains isolated from chicken samples to three abiotic surfaces: stainless steel, glass and polyurethane. Water contact angle and zeta potential measurements indicated that the strains varied with respect to surface hydrophobicity (17.6 ± 1.5 to 53.0 ± 2.3°) and surface charge (−3.3 ± 0.4 to −15.1 ± 0.5 mV). Individual strains had different attachment abilities to stainless steel and glass (3.79 ± 0.16 to 5.45 ± 0.08 log cell cm−2) but did not attach to polyurethane, with one exception. Attachment of Campylobacter to abiotic surfaces significantly correlated with cell surface hydrophobicity (P ≤ 0.007), but not with surface charge (P ≥ 0.507). Cells grown as planktonic and sessile culture generally differed significantly from each other with respect to hydrophobicity and attachment (P < 0.05), but not with respect to surface charge (P > 0.05). Principal component analysis (PCA) clustered strains into three groups (planktonic culture) and two groups (sessile culture) representing those with similar hydrophobicity and attachment. Of the four highly hydrophobic and adherent strains, three were C. coli suggesting that isolates with greater hydrophobicity and adherence may occur more frequently among C. coli than C. jejuni strains although this requires further investigation using a larger number of strains. Assignment of pulsed-field gel electrophoresis profiles to PCA groups using Jackknife analysis revealed no overall relationship between bacterial genotypes and bacterial attachment. No relationship between serotype distribution and bacterial attachment was apparent in this study.  相似文献   

3.
Salmonella biofilm on food-contact surfaces present on food processing facilities may serve as a source of cross-contamination. In our work, biofilm formation by multi-strains of meat-borne Salmonella incubated at 20 °C, as well as the composition and distribution of extracellular polymeric substances (EPS), were investigated in situ by combining confocal laser scanning microscopy (CLSM), scanning electron microscope (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and Raman spectroscopy. A standard laboratory culture medium (tryptic soy broth, TSB) was used and compared with an actual meat substrate (meat thawing-loss broth, MTLB). The results indicated that Salmonella grown in both media were able to form biofilms on stainless steel surfaces via building a three-dimensional structure with multilayers of cells. Although the number of biofilm cells grown in MTLB was less than that in TSB, the cell numbers in MTLB was adequate to form a steady and mature biofilm. Salmonella grown in MTLB showed “cloud-shaped” morphology in the mature biofilm, whereas when grown in TSB appeared “reticular-shaped”. The ATR-FTIR and Raman analysis revealed a completely different chemical composition between biofilms and the corresponding planktonic cells, and some important differences in biofilms grown in MTLB and in TSB. Importantly, our findings suggested that the progress towards a mature Salmonella biofilm on stainless steel surfaces may be associated with the production of the EPS matrix, mainly consisting of polysaccharides and proteins, which may serve as useful markers of biofilm formation. Our work indicated that a combination of these non-destructive techniques provided new insights into the formation of Salmonella biofilm matrix.  相似文献   

4.
We hypothesized that genomic regions specific to Listeria monocytogenes or selected L. monocytogenes strains may contribute to virulence and phenotypic differences among the strains. A whole genome alignment of two completed L. monocytogenes genomes and the one completed Listeria innocua genome initially identified 28 genomic regions of difference (RD) > 4 kb that were found in one or both L. monocytogenes genomes, but absent from the non-pathogenic L. innocua. In silico analyses using an additional 18 draft L. monocytogenes genomes showed that (i) 15 RDs were found in all or most L. monocytogenes genomes; (ii) three RDs were found in all or most lineage I genomes, but absent from lineage II genomes; and (iii) four RDs were found in all lineage II genomes, but no lineage I genomes. Null mutants in two L. monocytogenes-specific RDs (RD16 and RD30; found in most L. monocytogenes) and the lineage II-specific RD25 showed no evidence for impaired invasion or intracellular growth in selected tissue culture cells. Although, in pH 5.5 minimal media, the ΔRD30 null mutant showed reduced ability to compete with its parent strain, indicating that RD30 may have a role in L. monocytogenes growth under limited nutrient conditions at acidic pH.  相似文献   

5.
Tectoridin could be hydrolyzed to tectorigenin by β-glucosidase-producing intestinal bacteria. In this study, nine strains of Lactobacillus and bifidobacteria were screened for high levels of β-glucosidase activity. We investigated their ability to transform tectoridin from Pueraria flos to tectorigenin. Lactobacillus reuteri DSM20016 showed the highest cell-envelope associated β-glucosidase activity, whereas the intracellular β-glucosidase activity from Bifidobacterium adolescentis ATCC15703 was higher than the other screened bacterial strains. L. reuteri DSM20016, Lactobacillus rhamnosus GGB41031 and B. adolescentis ATCC15703 showed high bioconversion rate of tectoridin. L. reuteri DSM20016 showed the highest bioconversion efficiency of tectoridin, 100% tectoridin was hydrolyzed and there was an approximate 185-fold increase in the concentration of tectorigenin after 24 h. The present study suggests that L. reuteri DSM20016, L. rhamnosus GGB41031 and B. adolescentis ATCC15703 have great potential for converting tectoridin from Pueraria flos to more bioactive tectorigenin.  相似文献   

6.
Aqueous extracts of Plectranthus barbatus and Plectranthus ecklonii are traditionally used as anti-inflammatory and anti-fungal agents. The effect of these extracts and of its main component, rosmarinic acid, on the viability of the cariogenic bacteria, Streptococcus sobrinus and Streptococcus mutans, was determined by MIC and MBC. The influence of these extracts on the biofilm formation as well as on the inhibition of glucosyltransferase enzyme, produced by these species, was also analysed. Aqueous extracts of P. barbatus and P. ecklonii were stronger inhibitors than rosmarinic acid. MIC values of 3.8 and 4.7 mg/ml for S. sobrinus and 2.9 and 5.0 for S. mutans were obtained, while rosmarinic acid presented MIC values of 8.4 and 7.3 mg/ml. P. barbartus, P. ecklonii and rosmarinic acid presented MBC values of 9.5, 9.0 and 12.0 mg/ml for S. sobrinus, and 9.5, 10.0 and 12.5 mg/ml for S. mutans. The inhibition of biofilm formation by P. barbatus, P. ecklonii and rosmarinic acid presented IC50 values of, respectively, 0.6, 1.0 and 3.1 mg/ml for S. sobrinus and 1.4 and 2.7 and 1.3 mg/ml for S. mutans. The glucosyltransferase inhibition activity by theses extracts and rosmarinic acid was calculated and IC50 values presented were, respectively, 1.1, ca 1.2 and 2.1 mg/ml for S. sobrinus and 3.1, 1.6 and 3.9 mg/ml for S. mutans were obtained. These extracts may be useful in the prevention of dental carie.  相似文献   

7.
The bactericidal effect on food processing surfaces of ceiling-mounted UV-C light (wavelength 254 nm) was determined in a fish smoke house after the routine cleaning and disinfection procedure. The total aerobic counts were reduced during UV-C light exposure (48 h) and the number of Listeria monocytogenes positive samples went from 30 (of 68) before exposure to 8 (of 68). We therefore in a laboratory model determined the L. monocytogenes reduction kinetics by UV-C light with the purpose of evaluating the influence of food production environmental variables, such as presence of NaCl, organic material and the time L. monocytogenes was allowed to adhere to steel before exposure. L. monocytogenes grown and attached in tryptone soy broth (TSB) with glucose were rapidly killed (after 2 min) by UV-C light. However, bacteria grown and adhered in TSB with glucose and 5% NaCl were more resistant and numbers declined with 4-5 log units during exposure of 8-10 min. Bacteria grown in juice prepared from cold-smoked salmon were protected and numbers were reduced with 2-3 log when UV-C light was used immediately after attachment whereas numbers did not change at all if bacteria had been allowed to form a biofilm for 7 days before exposure. It is not known if this enhanced survival is due to physiological changes in the attached bacterial cells, a physical protection of the cells in the food matrix or a combination. In conclusion, we demonstrate that UV-C light is a useful extra bacteriocidal step and that it, as all disinfecting procedures, is hampered by the presence of organic material.  相似文献   

8.
The main objective of this work was to explore the applicability of the Intense Light Pulses (ILP) for decontamination of a stainless steel meat contact surface, exemplified by a slicing knife, as a function of time between contamination and decontamination, number of light pulses applied, and the prior contact with different meat matrices. Listeria monocytogenes and Escherichia coli O157:H7 were chosen as the challenge microorganisms. The ILP system was a laboratory-scale four-lamp batch system generating 3 J/cm2 with an input voltage of 3000 V. The results obtained demonstrate successful application of ILP treatment for reduction of L. monocytogenes and E. coli O157:H7 on a surface of stainless steel slicing knife. The inactivation effectiveness depended on the type of meat product that was in the contact with the treated surface and on the time between the contamination and the ILP treatment. Statistical analysis showed the significant interaction between the time and type of meat product on the effectiveness of ILP treatment. The highest effectiveness of the ILP (the complete inactivation of 6.5 log CFU/side of knife) was obtained when the knife surface was in contact with the products containing lower fat and protein content and when it was treated with pulsed light as fast as possible after the contamination (within 60 s). The decontamination efficacy of ILP treatment could not be improved by multiple light pulses if lost due to the extended time between the moment of contamination and ILP treatment. Results showed that the suggested approach can be very effective as an intervention strategy along meat processing lines preventing cross-contamination between the equipment and the final product.  相似文献   

9.
In food processing lines or in complex equipment such as pumps or valves, microorganisms are exposed to varying hydrodynamic conditions caused by the flow of liquid food, and biofilms are thus grown under a wide distribution of local hydrodynamic strengths. Using an industrially relevant strain of Candida krusei, we demonstrated that biofilms formed on stainless steel for 4 days at Reynolds (Re) numbers ranging from 294,000 to 1.2 × 106 proceeds through three distinct developmental phases. These growth phases transform adherent blastospores to well-defined cellular communities encased in an extracellular matrix and biofilm formation increases when increasing Reynolds number and time. In all growth phases, the morphology of C. krusei biofilm revealed the influence of hydrodynamic drag. Indeed, we study the effect of cleaning and sanitation procedure in the control of turbulent flow-generated biofilm. This procedure involves alkali (NaOH 0.5%) and sodium hypochlorite (500 ppm). In terms of total biofilm mass, removal decreases with increasing biofilm age. The largest reduction post-treatment (between 57% and 62%) was observed, to all Reynolds numbers, on 24 and 48 h-old biofilms. Removal was between 39% and 46% on 72 h-old biofilms and was close to 30% for all Reynolds numbers on 96 h-old biofilm.  相似文献   

10.
The dominant compounds in Satureja horvatii oil were p-cymene (33.14%), thymol (26.11%) and thymol methyl ether (15.08%). The minimum inhibitory concentration (MIC) varied from 0.03 to 0.57 mg/mL for bacteria, and from 0.56 to 2.23 mg/mL for yeast strains, while minimum bactericidal/yeast-cidal concentration (MBC/MYC) varied from 0.07 to 1.15 mg/mL and 1.11 to 5.57 mg/mL for bacteria and yeasts, respectively. The antiradical potential of the essential oil was evaluated using hydroxyl radical (•OH) generated in Fenton reaction. The meat preserving potential of essential oil from Satureja horvatii was investigated against L. monocytogenes. Essential oil successfully inhibited development of L. monocytogenes in pork meat. Sensorial evaluation on flavor and color of meat was performed. The color and flavor of meat treated with essential oil improved after 4 days of storage. S. horvatii essential oil can act as a potent inhibitor of food spoiling microorganisms, in meat products and also can be a useful source of natural antioxidants.  相似文献   

11.
The aim of the present work was to study the effect of dietary supplementation of Euphorbia heterophylla on the quality of the Guinea pig meat. Forty guinea pigs were divided into two groups fed ad libitum during 46 days a Panicum maximum diet (Panicum diet) or a mixed diet (75% Panicum maximum + 25% Euphorbia heterophylla) (Paneuphorbia diet) to compare their effects on performances and on the composition of guinea pig tissues and carcass. Daily weight gain, liver weight, carcass yield, and the lipid content of both the carcass and the perirenal fat were significantly increased by the Paneuphorbia diet. Feeding Paneuphorbia diet increased (P < 0.05) the n-3 PUFA content in perirenal fat, muscle, liver and in the carcass and decreased (P < 0.05) the n-6/n-3 ratios in all these tissues and the carcass. In conclusion, this study shows that Euphorbia heterophylla is a source of n-3 fatty acids which can improve significantly the n-3 PUFA content of Guinea pig meat and carcass.  相似文献   

12.
The inhibitory effect of 60 different essential oils was evaluated on a Pseudomonas putida strain of meat origin, associated with meat spoilage. Essential oils were tested at concentrations from 0.003 to 0.8% (wt/vol) to determine minimum inhibitory and maximal tolerated concentrations (MIC and MTC, respectively) using an agar medium culture. Of the 60 samples tested, Corydothymus capitatus essential oil was the most active showing a MIC of 0.025% and a MTC of 0.06%. Seven essential oils (Cinnamomum cassia, Origanum compactum, Origanum heracleoticum, Satureja hortensis, Satureja montana, Thymus vulgaris carvacroliferum, Thymus vulgaris thymoliferum) have shown a strong antimicrobial activity against P. putida with a MIC of 0.05% and a MTC ranging from 0.013% to 0.025%. Ten other oils (Cinnamomum verum (leaf and bark), Eugenia caryophyllus, Cymbopogon martinii var. motia, Cymbopogon nardus, Melaleuca linariifolia, Origanum majorana, Pimenta dioica, Thymus satureoides, Thymus serpyllum) showed a high antimicrobial activity showing a MIC ranging from 0.1% to 0.4%, while the remaining were less active showing a MIC ? 0.8%.  相似文献   

13.
The effect of marination on the survival and growth of the pathogens Salmonella enterica and Listeria monocytogenes on beef pieces was investigated.  相似文献   

14.
Lactobacillus strains were isolated from kimchi and investigated for their potential use for probiotic yogurt starters. Two of the isolated strains have over 90% survival rate to artificial gastric acid (pH 2.5, 1% pepsin) and artificial bile acid (0.3% oxgall). These strains were identified as Lactobacillus plantarum by 16S rRNA sequencing, and named as L. plantarum SY11 and L. plantarum SY12. The known carcinogenic enzyme, β-glucuronidase was not produced by L. plantarum SY11 and L. plantarum SY12. These 2 strains were found to be resistant to several antibiotics and strongly adhered to intestinal cells. Antiallergic effect of L. plantarum SY11 and L. plantarum SY12 was demonstrated using nitric oxide (NO) and cytokine production. L. plantarum SY11 and L. plantarum SY12 were capable of significantly decreasing NO production, and reduced T helper 2-associated cytokines, cyclooxygenase-2, tumor necrosis factor-α, and inducible nitric oxide synthase compared to control. Yogurt samples produced using L. plantarum SY11 and L. plantarum SY12 did not show significant differences in microbiological, physicochemical, and sensory properties compared with yogurt sample produced using commercial strain. Therefore, these two strains could be used as probiotic yogurt starters with antiallergic effects.  相似文献   

15.
P.S. Negi 《LWT》2008,41(10):1857-1861
The crude hexane and chloroform extracts from the fruit rinds of Garcinia cowa and Garcinia pedunculata were studied for their antibacterial activity against some foodborne pathogens and spoilage bacteria such as Bacillus cereus, Bacillus coagulans, Bacillus subtilis, Staphylococcus aureus and Escherichia coli. The minimum inhibitory concentrations (MICs) of the extracts determined by the agar dilution method were ranging from 15 to 500 μg/ml and 300 to 1250 μg/ml for G. cowa and G. pedunculata, respectively. However, the hexane and chloroform extracts from the fruit rinds of G. cowa exhibited marked inhibitory effect against all the test organisms and were more effective than that of G. pedunculata extracts. The antibacterial activity of all the extracts was more pronounced against the tested Gram-positive bacteria than the tested Gram-negative bacterium. Furthermore, this study is the first report on the in vitro antibacterial activity of extracts from the fruit rinds of G. cowa and G. pedunculata.  相似文献   

16.
Specific strains should only be regarded as probiotics if they fulfill certain safety, technological and functional criteria. The aim of this work was to study, from a comprehensive point of view (in vitro and in vivo tests), three Lactobacillus strains (Lactobacillus paracasei JP1, Lactobacillus rhamnosus 64 and Lactobacillus gasseri 37) isolated from feces of local newborns, determining some parameters of technological, biological and functional relevance. All strains were able to adequately grow in different economic culture media (cheese whey, buttermilk and milk), which were also suitable as cryoprotectants. As selective media, LP-MRS was more effective than B-MRS for the enumeration of all strains. The strains were resistant to different technological (frozen storage, high salt content) and biological (simulated gastrointestinal digestion after refrigerated storage in acidified milk, bile exposure) challenges. L. rhamnosus 64 and L. gasseri 37, in particular, were sensible to chloramphenicol, erythromycin, streptomycin, tetracycline and vancomycin, increased the phagocytic activity of peritoneal macrophage and induced the proliferation of IgA producing cells in small intestine when administered to mice. Even when clinical trails are still needed, both strains fulfilled the main criteria proposed by FAO/WHO to consider them as potential probiotics for the formulation of new foods.  相似文献   

17.
A new and extensive growth and growth boundary model for psychrotolerant Lactobacillus spp. was developed and validated for processed and unprocessed products of seafood and meat. The new model was developed by refitting and expanding an existing cardinal parameter model for growth and the growth boundary of lactic acid bacteria (LAB) in processed seafood (O. Mejlholm and P. Dalgaard, J. Food Prot. 70. 2485–2497, 2007). Initially, to estimate values for the maximum specific growth rate at the reference temperature of 25 °C (μref) and the theoretical minimum temperature that prevents growth of psychrotolerant LAB (Tmin), the existing LAB model was refitted to data from experiments with seafood and meat products reported not to include nitrite or any of the four organic acids evaluated in the present study. Next, dimensionless terms modelling the antimicrobial effect of nitrite, and acetic, benzoic, citric and sorbic acids on growth of Lactobacillus sakei were added to the refitted model, together with minimum inhibitory concentrations determined for the five environmental parameters. The new model including the effect of 12 environmental parameters, as well as their interactive effects, was successfully validated using 229 growth rates (μmax values) for psychrotolerant Lactobacillus spp. in seafood and meat products. Average bias and accuracy factor values of 1.08 and 1.27, respectively, were obtained when observed and predicted μmax values of psychrotolerant Lactobacillus spp. were compared. Thus, on average μmax values were only overestimated by 8%. The performance of the new model was equally good for seafood and meat products, and the importance of including the effect of acetic, benzoic, citric and sorbic acids and to a lesser extent nitrite in order to accurately predict growth of psychrotolerant Lactobacillus spp. was clearly demonstrated. The new model can be used to predict growth of psychrotolerant Lactobacillus spp. in seafood and meat products e.g. prediction of the time to a critical cell concentration of bacteria is considered useful for establishing the shelf life. In addition, the high number of environmental parameters included in the new model makes it flexible and suitable for product development as the effect of substituting one combination of preservatives with another can be predicted. In general, the performance of the new model was unacceptable for other types of LAB including Carnobacterium spp., Leuconostoc spp. and Weissella spp.  相似文献   

18.
The influence of a commercial chilling process (18 h at 10 °C followed by up to 78 h at 2 °C) on Pseudomonas fluorescens inoculated on beef carcass surfaces at four sites, neck (NE), outside round (OR), brisket (BR) and foreshank/brisket (FB) before chilling (“hot inoculated”) or after chilling for 24 h (“cold inoculated”) was investigated. Pseudomonas counts increased significantly at all sites on “hot inoculated” carcasses during storage, but on “cold inoculated” carcasses, counts declined or remained unchanged. On hot and cold inoculated carcasses, differences in Pseudomonas growth or survival were demonstrated between sites. No clear relationships were observed between Pseudomonas growth or survival and chiller relative humidity (RH) or surface water activity (aw) at the different sites. These results were unexpected, and are discussed in relation to environmental factors that affect the growth/survival of P. fluorescens on carcass surfaces during chilling i.e. temperature, RH, and the relationship of these parameters to surface water activity (aw).  相似文献   

19.
Different species of Lactobacillus involved in dairy product fermentation and ripening were considered in order to study the effect of high pressure homogenization (HPH) on: (i) fermentation kinetics of HPH treated cells inoculated in milk; (ii) metabolic profiles; (iii) release of intracellular proteolytic enzymes; and (iv) enhance of the activity of extracellular or cellular wall located proteolytic enzymes. The HPH treatments applied were 50, 100, 150 MPa, 2 cycles at 50 and at 100 MPa. The viability loss did not exceed 1.3 log cfu/ml after the higher treatments applied. The electrophoretic profiles of α- or β-casein incubated with the different cell free filtrates shown that HPH positively affected the proteolytic activity of some strains. Moreover, HPH affected the acidification rates of the milk inoculated with the processed cells and the primary metabolism of some strains. Regarding volatile compounds, ethanol, acetoin and 2-methyl butyric acid were subjected to the major changes when the inoculum had been processed.  相似文献   

20.
We investigated the potential use of biofilm formed by a competitive-exclusion (CE) microorganism to inactivate Escherichia coli O157:H7 on a stainless steel surface. Five microorganisms showing inhibitory activities against E. coli O157:H7 were isolated from vegetable seeds and sprouts. The microorganism with the greatest antimicrobial activity was identified as Paenibacillus polymyxa (strain T5). In tryptic soy broth (TSB), strain T5 reached a higher population at 25 °C than at 12 or 37 °C without losing inhibitory activity against E. coli O157:H7. When P. polymyxa (6 log CFU/mL) was co-cultured with E. coli O157:H7 (2, 3, 4, or 5 log CFU/mL) in TSB at 25 °C, the number of E. coli O157:H7 decreased significantly within 24 h. P. polymyxa formed a biofilm on stainless steel coupons (SSCs) in TSB at 25 °C within 24 h, and cells in biofilms, compared to attached cells without biofilm formation, showed significantly increased resistance to a dry environment (43% relative humidity [RH]). With the exception of an inoculum of 4 log CFU/coupon at 100% RH, upon exposure to biofilm formed by P. polymyxa on SSCs, populations of E. coli O157:H7 (2, 4, or 6 log CFU/coupon) were significantly reduced within 48 h. Most notably, when E. coli O157:H7 at 2 log CFU/coupon was applied to SSCs on which P. polymyxa biofilm had formed, it was inactivated within 1 h, regardless of RH. These results will be useful when developing strategies using biofilms produced by competitive exclusion microorganisms to inactivate foodborne pathogens in food processing environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号