首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interesterification of palm stearin (PS) with liquid vegetable oils could yield a good solid fat stock that may impart desirable physical properties, because PS is a useful source of vegetable hard fat, providing β′ stable solid fats. Dietary ingestion of olive oil (OO) has been reported to have physiological benefits such as lowering serum cholesterol levels. Fat blends, formulated by binary blends of palm stearin and olive oil in different ratios, were subjected to chemical interesterification with sodium methoxide. The original and interesterified blends were examined for fatty acid and triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interesterification caused rearrangement of triacylglycerol species, reduction of trisaturated and triunsaturated triacylglycerols content and increase in diunsaturated-monosaturated triacylglycerols of all blends, resulting in lowering of melting point and solid fat content. The incorporation of OO to PS reduced consistency, producing more plastic blends. The mixture and chemical interesterification allowed obtaining fats with various degrees of plasticity, increasing the possibilities for the commercial use of palm stearin and olive oil.  相似文献   

2.
Fat/oil blends, formulated by mixing fully hydrogenated palm oil stearin or palm oil stearin with vegetable oils (canola oil and cottonseed oil) in different ratios from 30:70 to 70:30 (w/w %), were subjected to chemical interesterification reactions on a laboratory scale. Fatty acid (FA) composition, iodine value, slip melting point (SMP) and solid fat content (SFC) of the starting blends were analysed and compared with those of the interesterified blends. SMPs of interesterified blends were decreased compared to starting blends because of extensive rearrangement of FAs among triacylglycerols. These changes in SMP were reflected in the SFCs of the blends after the interesterification. SFCs of the interesterified blends also decreased with respect to the starting blends, and the interesterified products were softer than starting blends. These interesterified blends can be used as an alternative to partial hydrogenation to produce a plastic fat phase that is suitable for the manufacture of margarines, shortenings and confectionary fats.  相似文献   

3.
《Food chemistry》1999,64(1):83-88
Palm stearin–sunflower oil (PS:SO) blends, formulated by mixing 40 to 80% palm stearin in increments of 10% (w/w), were subjected to transesterification catalysed by lipases from Pseudomonas sp. and Rhizomucor miehei (Lipozyme 1M 60). The physical properties of the transesterified products were evaluated by slip melting point (SMP), differential scanning calorimetry (DSC), solid fat content (SFC) and X-ray difflaction (XRD) analyses. SMP results indicate that Pseudomonas lipase caused a bigger drop in SMP (33%) in the PS–SO (40:60) blend than the R. miehei-lipase-catalysed reaction blend (13%). The Pseudomonas-catalyzed blends of PS-SO, at 40:60 and 50:50 ratios, showed complete melting at 37 and 40°C, respectively, while the R. miehei-catalyzed PS–SO blend at 40:60 ratio had a residual SFC of 3.9% at 40°C. Pseudomonas lipase also successfully changed the polymorphic form(s) in the unreacted PS–SO mixture from a predominantly β form to a predominantly β′ form in the transesterified blends. However, no changes in polymorphic forms were observed after transesterification with R. miehei lipase (as against to the unreacted PS–SO blends). These results suggest that the Pseudomonas lipase caused a greater randomization and diversification of fatty acids, particularly palmitic acids, in palm stearin with the unsaturated fatty acids from sunflower oil than did R. miehei lipase. Based on the physical characteristics, the Pseudomonas-catalyzed 40:60 and 50:50 PS:SO blends would be the two most suitable blends to be used as table margarine formulations.  相似文献   

4.
This study reports the use of upgraded ultrasonic velocity profiling with pressure difference methodology; extended from previous work demonstrating true in‐line rheological and solid fat content (SFC) characterisation of complex opaque fat blends, subjected to scaled dynamic processing conditions. The experimental results have successfully confirmed previous non‐invasive, in‐line measurements for instantaneous velocity and rheological profiling of complex opaque fat blends [International Journal of Food Science and Technology 43 (2008) 2083]. A method for in‐line measurements under dynamic processing conditions to obtain the SFC of a fat blend was developed and successfully tested for a 30% palm stearin and 70% rapeseed oil system over a temperature range of 10–40 °C. These measurements correlated well with standard SFC values from pulsed‐nuclear magnetic resonance (p‐NMR) measurements deviating not more than +/– 2% SFC points from the standard p‐NMR values.  相似文献   

5.
Trans-free interesterified fats were prepared from blends of hard palm stearin (hPS) and rice bran oil (RBO) at 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, and 80:20 weight % using immobilized Mucor miehei lipase at 60°C for 6 h with a mixing speed of 300 rpm. Physical properties and crystallization and melting behaviors of interesterified blends were investigated and compared with commercial margarine fats. Lipase-catalyzed interesterification modified triacylglycerol compositions and physical and thermal properties of hPS:RBO blends. Slip melting point and solid fat contents (SFC) of all blends decreased after interesterification. Small, mostly β′ form, needle-shaped crystals, desirable for margarines were observed in interesterified fats. Interesterified blend 40:60 exhibited an SFC profile and crystallization and melting characteristics most similar to commercial margarine fats and also had small needle-like β′ crystals. Interesterified blend 40:60 was suitable for use as a transfree margarine fat.  相似文献   

6.
Five domestic and four imported Malaysian plastic fat products and their separated high melting point triacylglycerols (HMG) were analyzed for their chemical and physical characteristics. Chemical characteristics consisted of fatty acid (FA) and triacylglycerol (by TG carbon number) composition. Physical characteristics encompassed dropping and softening points, solid fat content, polymorphic crystal habit and DSC melting and crystallization patterns. β crystal habit was related to high levels of 16 or 18 carbon fatty acids in the HMG and high levels of TG48 or TG54 which are β tending. Domestic products contained very low levels of trans fatty acids; they were blends of natural fats such as palm oil, palm kernel and milk fat. Levels of the individual fats in the blends were estimated by means of FA and TG composition analyses. The content of solid fat, determined by the AOCS method, was much lower than that obtained by the IUPAC method. Texture at 23C of products, as determined by penetrometer test of the original materials, was similar for all products.  相似文献   

7.
Hard fractions of palm oil and coconut oil, blended in the ratios of 90:10, 85:15, 80:20 and 75:25, were interesterified for 8 h using Lipozyme TL IM. Major fatty acids in the blends were palmitic acid (41.7–48.4%) and oleic acid (26.2–30.8%). Medium‐chain fatty acids accounted for 4.5–13.1% of the blends. After interesterification (IE), slip melting point was found to decrease from 44.8–46.8 °C to 28.5–34.0 °C owing to reduction in solids content at all temperatures. At 37.5 °C, the blends containing 25% coconut stearins had 17.4–19% solids, which reduced to 0.4–1.5% on IE, and the slip melting point (28.6 and 28.8 °C) indicated their suitability as margarine base. The reduction in solid fat index of the interesterified fats is attributed to the decrease in high‐melting triacylglycerols in palm oil (GS3 and GS2U type) and increase in triolein (GU3) content from 1 to 9.2%. Retention of tocopherols and β‐carotene during IE was 76 and 60.1%, respectively, in 75:25 palm stearin and coconut stearin blend.  相似文献   

8.
将棕榈油硬脂(ST)与大豆油(SBO)按不同比例混合再进行酯交换反应可以得到不同固脂特征的油脂。实验发现,其中的酯交换油脂IE(70%ST 30%SBO)最适合于加工成通用型起酥油。对这种酯交换油脂的打发性、软硬度及氧化稳定性进行了分析,并与目前市场上常见的全棕榈油基起酥油进行了比较,发现酯交换油脂的柔软度和打发性能均优于后者,但其氧化稳定性不及全棕榈油基起酥油。  相似文献   

9.
Six binary formulations of medium- and long-chain triacylglycerols (MLCT) fat and palm stearin and four ternary formulations of MLCT fat, palm stearin, and palm olein were produced. MLCT fat and palm stearin were mixed in ranges of 40–90% with 10% increments (w/w), while for the ternary formulations, 10% and 20% palm olein were substituted to palm stearin in MS 46 and MS 55 formulations. The solid fat content (SFC) by pulsed nuclear magnetic resonance and heating profiles using differential scanning calorimeter of these formulations were determined. Results obtained from SFC and heating profiles found that all the formulations melted completely at 55 °C. The high complete melting temperature is due to the stearic acid content in MLCT fat. Generally, increasing % MLCT fat (40–90%) in the formulations lowers the SFC curves at the measured temperatures (0–60 °C). The binary samples of MS 73, MS 82, and MS 91 showed SFC between 15% and 25% at room temperature (25 °C), which indicated that these formulations were suitable for shortening production. As the production cost of MLCT fat is high (approximately USD 3/kg), an attempt to reduce the proportion of MLCT fat in the shortening formulations was done by developing the ternary formulations. Shortenings formulated with 40:40:20 (MSO 442), 50:40:10 (MSO 541), and 50:30:20 (MSO 532) of MLCT fat/palm stearin/palm olein formulations had similar SFC% at 25 °C, and they were subsequently chosen to produce shortening. Using multivariate analysis, taste attribute showed positively and highly correlated to the melting temperature and SFC at 25 °C of the MLCT-enriched shortenings. In acceptance test, high correlation (R 2 = 0.98) was only found on cakes made from MSO 442 and MSO 541 shortenings. Both untrained and trained panelists rated the Madeira cakes made from MSO 532 shortening the highest for overall acceptability.  相似文献   

10.
核桃油与棕榈硬脂复配体系在涂抹脂基料油中的应用   总被引:1,自引:0,他引:1  
对棕榈硬脂与核桃油复配体系的相容性及结晶性质变化进行探究,考察复配体系在涂抹脂基料油中的应用。结果表明,当核桃油含量达到20%以上时,复配体系的固体脂肪含量(Solid Fat Content,SFC)变化趋势符合涂抹脂的最佳SFC曲线特征,适合用作涂抹脂基料油;在温度高于33.3℃时,核桃油与棕榈硬脂在复配比例(1∶9、2∶8、3∶7、4∶6)下可以完全相容;在核桃油比例达到3∶7以上时,复配体系的屈服值符合涂抹脂的最佳屈服值范围;在温度低于30℃时,棕榈硬脂及复配体系具有较强的晶体网络结构,能在运输和贮藏过程中维持稳定的形态,在接近体温时也能快速熔化,产生涂抹脂类似的口感,复配体系中晶体以β′晶型为主。该结果为棕榈硬脂及核桃油复配体系在涂抹脂中的应用奠定基础。  相似文献   

11.
Interesterification of appropriate blends of vegetable oils offers an alternative method for obtaining semi-solid fats without hydrogenation. Random interesterification was carried out on blends of different oils, namely palm oil and sunflower oil (8:2, 7:3 and 6:4 w/w), palm oil and rice bran oil (8:2 and 7:3 w/w), palm oil and coconut oil (9:1 and 6:4 w/w), as well as palm oil and soybean oil (7:3 w/w), in the presence of sodium methoxide as a catalyst (0.2% w/v). The melting characteristic of the interesterified fat obtained from a blend of refined red palm oil and sunflower oil blend, in the ratio of 4:1 (w/w; slip melting point 41C) indicated that this combination could be an ideal margarine fat base.  相似文献   

12.
Fat blends, formulated by mixing refined, bleached and deodorised (RBD) palm oil (PO) or RBD palm stearin (PS) with RBD rice bran oil (RBO) in various ratios were subjected to chemical interesterification (CIE) at pilot scale using sodium methoxide (NaOMe) as catalyst. The resultant interesterified fat was processed through a margarine crystalliser under optimised conditions. The blends before and after CIE were investigated for triacylglycerol (TAG) composition, solid fat content (SFC) and melting characteristics, polymorphic form, fatty acid composition (FAC), bioactive (tocols, sterols, oryzanol) constituents and trans fatty acids (TFA). CIE was found to be very effective in terms of rearrangement of fatty acids (FAs) among TAGs and consequent changes in the physical characteristics. The SFC of the interesterified PS/RBO blends decreased significantly ( P  ≤ 0.05) when compared with those of PO/RBO blends. The interesterified binary blends with 50–60% PS and 40–50% RBO, and 70–80% PO and 20–30% RBO had SFC curves in the range of all-purpose type shortenings. CIE facilitated the formation of β' polymorphic forms. FAC of shortenings prepared using the optimised blends contained 15–20% C18:2 polyunsaturated fatty acid (PUFA) and no TFA. Total tocol, sterol and oryzanol content of zero trans shortenings were 650–1145, 408–17 583 and 1309–14 430 ppm. CIE using NaOMe did not affect the bioactive constituents significantly ( P  ≤ 0.05).  相似文献   

13.
食品工业中通常利用乳化剂调控塑型脂肪的物理性质及加工性能,其中,单硬脂酸甘油酯(GMS)是应用较为广泛的乳化剂。通过考察质量分数1%,2%,4%的GMS对棕榈硬脂在不同温度下的固体脂肪含量(SFC)、硬度及微观结构的影响,发现:棕榈硬脂及其与质量分数1%,2%,4%的GMS混合物的SFC和硬度随着温度的升高而降低。GMS的添加量对棕榈硬脂SFC的影响在较高温度(21.1~33.3℃)下更显著,当GMS添加量高于1%时,棕榈硬脂的SFC随GMS质量分数的增加而增加。而在15~30℃时,4%GMS的棕榈硬脂的硬度显著高于其它质量分数,且结晶颗粒细小,结晶网络结构致密。结果表明,在温度高于30℃时,添加GMS可以增加棕榈硬脂的SFC及硬度,且减小其结晶颗粒粒度,赋予更为致密的结构,这对棕榈硬脂基塑性脂肪在温度较高季节的储运及品质改善提供了理论依据。  相似文献   

14.

ABSTRACT

Three palm oil reference materials were produced for solid fat content analysis employing the Malaysian Palm Oil Board (MPOB) Test Methods. Thirteen laboratories participated in the characterization study, where the solid fat content in palm oil, palm olein and palm stearin were identified at temperature range from 0 to 45C. The consensus values were calculated based on the acceptability of statistical results from collaborating laboratories. Both of the consensus values and their uncertainties (%) for each reference material are as follows: 71.12 ± 1.82% (0C), 54.07 ± 1.05% (10C), 37.44 ± 0.88% (15C), 24.18 ± 1.09% (20C), 13.32 ± 0.86% (25C), 7.64 ± 0.28% (30C), 4.05 ± 0.14% (35C) and 1.25 ± 0.49% (40C) for SFC of palm oil, 66.32 ± 1.93% (0C), 43.53 ± 1.32% (10C), 22.50 ± 0.78% (15C), 6.68 ± 1.14% (20C) and 1.40 ± 0.35% (25C) for SFC of palm olein, and 78.09 ± 1.23% (0C), 67.66 ± 0.71% (10C), 56.29 ± 1.18% (15C), 44.37 ± 1.13% (20C), 30.22 ± 1.25% (25C), 20.08 ± 0.58% (30C), 13.72 ± 0.32% (35C), 8.97 ± 0.72% (40C) and 5.06 ± 0.41% (45C) for solid fat content of palm stearin.

PRACTICAL APPLICATIONS

The implementation of the ISO 17025 accreditation should be encouraged for testing laboratories to assure the traceability of analysis performed. This accreditation requires the use of certified reference materials to ensure that the analysis performed is parallel to the ISO 17025 standards. However, the unavailability of palm oil reference materials will affect the implementation of such standards for laboratories that are performing palm oil analyses. Hence, this study is aimed to characterize and certify the palm oil reference materials for determination of solid fat content. The establishment of this study is hoped to increase the credibility of laboratories, which are involved in the palm oil analysis. This will also promote the Malaysia Palm Oil Board as a center for the certification of palm oil reference materials.  相似文献   

15.
Several binary blends of vegetable oils commonly used in industrial shortenings (i.e., palm oil (PO), hydrogenated palm oil (HPO), soybean oil (SO), hydrogenated soybean oil (HSO), low-erucic acid rapeseed oil (LERO), hydrogenated low-erucic acid rapeseed oil (HLERO)) were studied for their physical properties such as solid fat content (SFC) by nuclear magnetic resonance (NMR) and textural properties (hardness). Microstructure was also observed by microscopy in order to explain the variability in hardness for samples having the same SFC values. The blends studied by microscopy were the following: HSO, HPO and HLERO diluted in LERO. For these three blends which had the same SFC, the level of network structure was different. HSO diluted in LERO had more crystals, closer to each other and overlapped. This can explain that HSO has a higher hardness than HPO or HLERO, for a same SFC value, when diluted in LERO. Polymorphism was also observed by powder X-ray diffraction. The variability in hardness for samples having the same SFC is due to various crystal types and/or network structures that are formed upon crystallization of hard fats. This work demonstrates that for binary blends of studied oils, changes in the hardness are controlled mostly by the SFC, polymorphism and also by the material’s microstructure.  相似文献   

16.
In this study the relationship between slip melting point (SMP) and fatty acid composition of blends before and after interesterification were investigated. Forty-four blends were prepared using sunflower, canola and cottonseed oils as well as palm stearin and/or fully hydrogenated palm stearin in different proportions. Fatty acid compositions and SMP of samples were determined and then SMP of the blends before and after interesterification were defined as a function of five fatty acids. Specific constants of C16:0, C18:0, C18:1, C18:2 and C18:3 fatty acids were determined as 0.455, 0.821, 0.622, 0.215 and -1.653, respectively, for the blends before interesterification and 0.532, 0.614, 0.399, 0.055 and -2.471, respectively, for the blends after interesterification by using least squares method. Slip melting point of blends were calculated using these constants and fatty acid compositions and then compared with the experimental values. No linear relationship existed between the calculated and experimental results of the blends before interesterification, but SMP of the blends after interesterification could be estimated with high (r=0.956) accuracy.  相似文献   

17.
Palm-based diacylglycerol (P-DAG) oils were produced through enzymatic glycerolysis of palm kernel oil (PKO), palm oil (PO), palm olein (POL), palm mid fraction (PMF) and palm stearin (PS). High purity DAG (83–90%, w/w) was obtained and compared to palm-based oils (P-oil) had significantly (< 0.05) different fatty acid composition (FAC), iodine value (IV) and slip melting point (SMP). Solid fat content (SFC) profiles of P-DAG oils as compared to P-oils had less steep curves with lower SFC at low temperature range (5–10 °C) and the higher complete melting temperatures. Also, P-DAG oils in contrast with P-oils showed endothermic as well as exothermic peaks with higher transition temperatures and significantly (< 0.05) higher crystallisation onsets, heats of fusion, and heats of crystallisation. Crystal forms for P-DAG oils were mostly in the β form.  相似文献   

18.
Several formulations based on blends of hydrogenated palm oil (MP 41·5°C) and palm stearin (IV 44) with other liquid oils, on direct blends of palm stearin with other liquid oils, and on 100% inter-esterified palm olein, were used as feedstocks in shortening production. The shortenings were stored at 20°C over a period of one month. Physicochemical characteristics, creaming properties and baking performance of the shortenings were evaluated and compared with the best shortening on the market. Slip melting point of the shortenings ranged from 41·5 to 46·4°C. Palm-cottonseed oil shortenings had higher solid fat contents at all temperatures than palm-soya bean or palm-low erucic acid rapeseed oil shortenings. The shortenings were rich in C50, C52and C54 glycerides. Creaming power after 12 min of beating ranged from 1·55 to 1·77 cm3 g?1. Palm stearin-cottonseed (3:2) oil shortening showed the best creaming performance. The specific volume of cakes ranged, for the experimental shortening, from 90% to 101% from the control, with low erucic acid-palm blends showing the best performance. In applications for both aerated cream and cakes, inter-esterified palm olein was excellent.  相似文献   

19.
Chemical transesterification and blending techniques were used for producing zero trans fats suitable for use as Iranian vanaspati. Triple blends of palm olein (POo), rapeseed (RSO) and sunflower oil (SFO) were subjected to two different treatments: (i) blending and then transesterification (BT) and (ii) transesterification of pure POo before blending with RSO and SFO (TB). The changes in slip melting point (SMP), solid fat content (SFC), carbon number (CN) triacylglycerol (TAG) composition, induction period (IP) of oxidation at 120 °C and IP of crystallisation at 20 °C of blends before and after treatments were investigated. Both BT and TB methods resulted in an increase in the CN48 TAG molecules, SMP and SFC, and a decrease in the IP of oxidation and crystallisation of initial blends. Samples made by TB method had higher CN48 TAG content, SMP, SFC and IP of oxidation, and lower IP of crystallisation than those made by BT method. Correlation between SFC at 20 °C and saturated fatty acid (SFA) content of the treated blends indicated that the SFA must be higher than 33.1% and 26.8% for BT and TB methods, respectively, to obtain fats suitable for use as vanaspati.  相似文献   

20.
《Food chemistry》2004,86(2):245-250
The crystallization, thermal, physical, chemical and morphological properties of palm oil were investigated using differential scanning calorimetry, polarized microscopy, pulsed nuclear magnetic resonance (NMR) and gas chromatography (GC). The palm oil was fractionated into various stearin and olein (with iodine values (IV)>63) fractions by means of a dry fractionation process. During the cooling sequence, samples were taken at regular intervals from the crystallizer and analyzed for their iodine values, chemical compositions and physical behaviour. The physical properties of olein and stearin fractions, such as cloud point, slip melting point and solid fat content, were dependent on the crystallization temperatures. The iodine values of the olein and stearin fractions increased as the crystallization temperature decreased and both fractions started to cloud at lower temperatures. The palmitic acid content of stearin and olein fractions was also affected by the crystallization temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号