首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We studied the influence of the hydrophobic hydrocarbon chain length of amphiphilic ruthenium dyes on the device performance in solid-state dye-sensitized solar cells. We found that the dyes with longer hydrocarbon chains gave higher efficiency values when used as a sensitizer in solid-state dye-sensitized solar cells. With increasing chain length, we observed higher currents and open-circuit voltages up to a limiting chain length. We attribute this improvement to the expected larger distance between TiO2 and the hole conductor, which seems to suppress recombination effectively.  相似文献   

2.
Kuo CY  Lu SY 《Nanotechnology》2008,19(9):095705
We propose a highly ordered multi-scale nanostructure of TiO(2) for applications as an anode in dye-sensitized solar cells (DSSCs). The structure is composed of a TiO(2) blocking layer, a TiO(2) inverse opal main body, regularly arranged transport channels between contacting spherical voids of the TiO(2) inverse opal, and TiO(2) nanoparticles coated on the spherical surfaces of the voids. The ordered and continuous backbone of the inverse opal serves as the fast electron transport pathways while the regularly arranged transport channels enable easy transport of dye and electrolyte within the structure. A multi-cycle procedure was developed to enable fabrication of thick inverse opals and easy adjustment of the inverse opal thickness. An example structure was constructed, involving a blocking layer of 90?nm thickness, an inverse opal of 100?nm voids, transport channels of 30-50?nm openings, and nanoparticles 10-15?nm in size. An open-circuit voltage decay investigation showed a significant improvement in electron lifetime for the proposed multi-scale TiO(2) nanostructure based DSSC than that of a TiO(2) nanoparticle film based DSSC, revealing the superior electron recombination characteristic offered by the proposed TiO(2) nanostructure. The conversion efficiency of the DSSC assembled from such an anode structure can reach 4% with a short-circuit current density (J(sc)) of 8.7?mA?cm(-2) and open-circuit potential (V(oc)) of 0.76?V under AM 1.5 (100?mW?cm(-2)) illumination.  相似文献   

3.
This work reports the use of sodium fluoride (in ethylene glycol electrolyte) as the replacement of hydrofluoric acid and ammonium fluoride to fabricate long and perpendicularly well-aligned TiO? nanotube (TNT) (up to 21 μm) using anodization. Anodizing duration, applied voltage and electrolyte composition influenced the geometry and surface morphologies of TNT. The growth mechanism of TNT is interpreted by analyzing the current transient profile and the total charge density generated during anodization. The system with low water content (2 wt %) yielded a membrane-like mesoporous TiO? film, whereas high anodizing voltage (70 V) resulted in the unstable film of TNT arrays. An optimized condition using 5 wt % water content and 60 V of anodizing voltage gave a stable array of nanotube with controllable length and pore diameter. Upon photoexcitation, TNTs synthesized under this condition exhibited a slower charge recombination rate as nanotube length increased. When made into cis-diisothiocyanato-bis(2,2?-bipyridyl-4,4?-dicarboxylato) ruthenium(II) bis (tetrabutyl-ammonium)(N719) dye-sensitized solar cells, good device efficiency at 3.33 % based on the optimized TNT arrays was achieved with longer electron time compared with most mesoporous TiO? films.  相似文献   

4.
The aim of this work is to prevent back transfer of electrons due to direct contact between the electrolyte and the FTO glass substrate using a TiO2 passivating layer. The TiO2 passivating layer was deposited on FTO glass by e-beam evaporation. The TiO2 film was prepared with different deposition rates. The specific surface area was reduced with increasing deposition rate. The nanoporous TiO2 upper layer was coated by screen-printing on the TiO2 passivating layer prepared by e-beam evaporation. The optical transmittance and absorbance of the TiO2 films depend on the morphology of the TiO2 passivating layer. The dye-sensitized solar cells influenced the surface morphology of the TiO2 passivating layer. The dye-sensitized solar cell using the TiO2 passivating layer recorded a maximum conversion efficiency of 4.93% due to effective prevention of the electron recombination to the electrolyte.  相似文献   

5.
Absorption of photon in wide wavelength region is an important requirement for the enhancement of photoconversion efficiency of dye-sensitized solar cells (DSSC). Lack of photon absorption from visible to NIR wavelength region by a single dye requires the use of plural dyes for the panchromatic sensitization of nanoporous TiO2. To our incredible surprise, when a dye cocktail of organic dye NK3705 and inorganic ruthenium based dye Z907 was implied for the dye adsorption, it led to the formation of dye double layer in spite of random arrangement of two dyes as evidenced from confocal laser microscopic investigations. Investigation pertaining to the evaluation of rate of dye adsorption and dye desorption for different organic and inorganic sensitizing dyes suggests that a combination of one dye with faster diffusion along with weak binding on TiO2 surface and another dye with slow diffusion along with strong binding leads to the formation of dye double layer from a dye mixture by a simple dipping process.  相似文献   

6.
A new DCM-based organic dye with a heteroleptic dual electron donor was designed and its electronic and optical properties were investigated theoretically for dye-sensitized solar cells (DSSCs). In this study, heteroleptic Dab dye was compared with other homoleptic dyes (Daa and Dbb). To gain insight into the factors responsible for photovoltaic efficiency, density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations of these dyes were conducted. It showed that Dab dye is available as a photovoltaic device from the energy diagram for the TiO2 electrode and the iodide electrolyte. It also showed that although Dab dye produces slightly stronger absorption at above 600 nm, Dbb dye would show a better overall absorption property. Owing to the strong electron density and high proximity of its anchoring carboxylic group to LUMO + 1 and LUMO, however, it is expected that Dab dye with a heteroleptic dual donor will show a competitive performance compared to other dyes with homoleptic dual donors in the conversion efficiency for DSSCs.  相似文献   

7.
The Li–O2 battery (LOB) is considered as a promising next‐generation energy storage device because of its high theoretic specific energy. To make a practical rechargeable LOB, it is necessary to ensure the stability of the Li anode in an oxygen atmosphere, which is extremely challenging. In this work, an effective Li‐anode protection strategy is reported by using boric acid (BA) as a solid electrolyte interface (SEI) forming additive. With the assistance of BA, a continuous and compact SEI film is formed on the Li‐metal surface in an oxygen atmosphere, which can significantly reduce unwanted side reactions and suppress the growth of Li dendrites. Such an SEI film mainly consists of nanocrystalline lithium borates connected with amorphous borates, carbonates, fluorides, and some organic compounds. It is ionically conductive and mechanically stronger than conventional SEI layer in common Li‐metal‐based batteries. With these benefits, the cycle life of LOB is elongated more than sixfold.  相似文献   

8.
We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.  相似文献   

9.
Zhao Y  Hu Y  Li Y  Zhang H  Zhang S  Qu L  Shi G  Dai L 《Nanotechnology》2010,21(50):505702
5?mm long aligned titanium oxide/carbon nanotube (TiO(2)/CNT) coaxial nanowire arrays have been prepared by electrochemically coating the constituent CNTs with a uniform layer of highly crystalline anatase TiO(2) nanoparticles. While the presence of the TiO(2) coating was confirmed by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and x-ray diffraction, the resultant TiO(2)/CNT coaxial arrays were demonstrated to exhibit minimized recombination of photoinduced electron-hole pairs and fast electron transfer from the long TiO(2)/CNT arrays to external circuits. This, in conjunction with the aligned macrostructure, facilitates the fabrication of TiO(2)/CNT arrays for various device applications, ranging from photodetectors to photocatalytic systems. Thus, the millimeter long TiO(2)/CNT arrays represent a significant advance in the development of new macroscopic photoelectronic nanomaterials attractive for a variety of device applications beyond those demonstrated in this study.  相似文献   

10.
近年来,在电致变色领域基于甲基紫精修饰高比表面积的纳米TiO2薄膜电极取得了巨大的进步,并将这项技术推向商业化.本文介绍了一种由有机变色分子修饰纳米晶TiO2薄膜电极而组装成的电致变色器件,通过"嫁接"在甲基紫精分子上的磷酸基和纳米TiO2薄膜电极表面的羟基化学吸附,我们得到了具有良好电致变色性能的"电子纸".本文采用的电解质是0.05mol/L的高氯酸锂和0.05mol/L的二茂铁的1,4丁内酯溶液,对电极为透明导电玻璃.实验证明该电致变色器件具有很高的稳定性,并达到了毫秒级的响应速度,在未来显示领域"电子纸"的商业化进程中具有很大的潜力.  相似文献   

11.
We investigated an inverted organic photovoltaic device structure in which a densely packed ~ 100 nm thin TiO2 layer on fluorine doped conducting glass serves as anode and poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/Au layer on top of the active layer serves as cathode. The active layer is comprised of a blend of poly(3-hexylthiopene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The rectification behavior of such a device is improved significantly and injection losses are minimized compared to devices without any compact TiO2 layer. Moreover, nanostructured P3HT active layer was achieved in-situ by spin coating concentrated pure P3HT and P3HT:PCBM blend and solar cell performances on thickness of the active layer were also investigated. For the inverted solar cells constructed with different concentrations of P3HT and PCBM keeping the P3HT:PCBM ratio 1:0.8 (wt.%), the highest short circuit current and efficiency was observed when the P3HT and PCBM concentration was equal to 1.5 (wt.%) and 1.2 (wt.%) respectively. This leads to highly stable and reproducible power conversion efficiency above 3.7% at 100 mW/cm2 light intensity under AM 1.5 conditions.  相似文献   

12.
Donor antenna dyes provide an exciting route to improving the efficiency of dye sensitized solar cells owing to their high molar extinction coefficients and the effective spatial separation of charges in the charge-separated state, which decelerates the recombination of photogenerated charges. Vertically oriented TiO(2) nanotube arrays provide an optimal material architecture for photoelectrochemical devices because of their large internal surface area, lower recombination losses, and vectorial charge transport along the nanotube axis. In this study, the results obtained by sensitizing TiO(2) nanotube arrays with the donor antenna dye Ru-TPA-NCS are presented. Solar cells fabricated using an antenna dye-sensitized array of 14.4 microm long TiO(2) nanotubes on Ti foil subjected to AM 1.5 one sun illumination in the backside geometry exhibited an overall conversion efficiency of 6.1%. An efficiency of 4.1% was obtained in the frontside illumination geometry using a 1 microm long array of transparent TiO(2) nanotubes subjected to a TiCl(4) treatment and then sensitized with the Ru-TPA-NCS dye. Open circuit voltage decay measurements give insight into the recombination behavior in antenna-dye sensitized nanotube photoelectrodes, demonstrating outstanding properties likely due to a reduction in the influence of the surface traps and reduced electron transfer from TiO(2) to ions in solution.  相似文献   

13.
We report on large work function shifts induced by the coverage of several organic semiconducting (OSC) films commonly used in organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs) with a porphyrin aggregated layer. The insertion between the organic film and the aluminum cathode of an aggregated layer based on the meso-tetrakis(1-methylpyridinium-4-yl) porphyrin chloride (porphyrin 1), with its molecules adopting a face-to-face orientation parallel to the organic substrate, results in a significant shift of the OSC work function towards lower values due to the formation of a large interfacial dipole and induces large enhancement of either the OLED or OPV device efficiency. OLEDs based on poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-2,1',3-thiadiazole)J (F8BT) and incorporating the porphyrin 1 at the cathode interface exhibited current efficiency values up to 13.8 cd/A, an almost three-fold improvement over the efficiency of 4.5 cd/A of the reference device. Accordingly, OPVs based on poly(3- hexylthiophene) (P3HT), [6,6]-phenyl-C61 butyric acid methyl ester (PC61BM) and porphyrin 1 increased their external quantum efficiencies to 4.4% relative to 2.7% for the reference device without the porphyrin layer. The incorporation of a layer based on the zinc meso-tetrakis (1-methylpyridinium-4-yl)porphyrin chloride (porphyrin 2), with its molecules adopting an edge-to-edge orientation, also introduced improvements, albeit more modest in all cases, highlighting the impact of molecular orientation.  相似文献   

14.
Herein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new DSC record open-circuit potential of 1.1 V with state-of-the-art organic D-π-A sensitizer and cobalt redox mediator. After ALD of only a few angstroms of Ga(2)O(3), the electron back reaction is reduced by more than an order of magnitude, while charge collection efficiency and fill factor are increased by 30% and 15%, respectively. The photogenerated exciton separation processes of electron injection into the TiO(2) conduction band and the hole injection into the electrolyte are characterized in detail.  相似文献   

15.
樊晋琼  王铎 《功能材料》2012,(7):868-871,876
以钛酸四丁酯为原料,在水/丁醇界面区进行水解,制备了锐钛矿型TiO2。分别将不同量的TiO2分散在水相或油相中,以界面聚合方法制备了TiO2/聚酰胺反渗透复合膜,研究了TiO2含量对所制备复合膜结构和分离性能的影响。SEM图谱结果表明,当TiO2添加到水相中时,其同时存在于聚酰胺复合膜皮层的底层以及聚砜基膜的指状孔道中;当TiO2添加到油相中时,复合膜表面结构致密,峰谷结构明显,可看到在膜皮层的表面有TiO2存在。膜分离性能的研究结果表明,与TiO2添加在水相中相比,TiO2添加在油相中能更好地提高膜分离性能。膜抑菌性能研究表明TiO2/聚酰胺反渗透膜在紫外光照下对大肠杆菌表现出良好的杀灭性能。  相似文献   

16.
A new approach to general sensors for odors and volatile organic compounds (VOCs) using thin films of chemically responsive dyes as a colorimetric sensor array is described. This optoelectronic "nose," by using an array of multiple dyes whose colors change based on the full range of intermolecular interactions, provides enormous discriminatory power among odorants in a simple device that can be easily digitally imaged. High sensitivities (ppb) have been demonstrated for the detection of biologically important analytes such as amines, carboxylic acids, and thiols. By the proper choice of dyes and substrate, the array can be made essentially nonresponsive to changes in humidity.  相似文献   

17.
The performance of dye-sensitized solar cells (DSSCs) is limited by the back-reaction of photogenerated electrons from the photoelectrode back into liquid electrolyte. An atomic layer deposited (ALD) hafnium oxide (HfO2) ultra thin compact layer was grown on the surface of the transparent conducting oxide (TCO) and its effects on the DSSC performance were studied with dark and illuminated current-voltage and electrochemical impedance spectroscopy measurements. It was found that this compact layer was effectively blocking the back-reaction of electrons from TCO to the liquid electrolyte, resulting in the overall photoconversion efficiency being enhanced by 66% compared to a DSSC with a conventional sol-gel processed TiO2 compact layer. Reasons for the improved photovoltaic performance were attributed to passivation of the TCO surface, better electronic quality of the compact layer material and the higher compactness, shown by atomic force microscopic images, obtained from gas-based deposition methods. Also, an increased short-circuit current density suggests that the interfacial resistance for the injection of electrons from the porous nanoparticle network to TCO was reduced. Further, the theory of electron recombination at the TCO/compact layer/electrolyte interface was developed and used to explain the improved DSSC performance with an ALD HfO2 compact layer.  相似文献   

18.
In this paper, top-porous and bottom-tubular TiO(2) nanotubes (TiO(2) NTs) loaded with palladium nanoparticles (Pd/TiO(2) NTs) were fabricated as an electrode for an enhanced photoelectrocatalytic (PEC) activity toward organic dye decomposition. TiO(2) NTs with a unique hierarchical top-porous and bottom-tubular structure were prepared by a facile two-step anodization method and Pd nanoparticles were decorated onto the TiO(2) NTs via a photoreduction process. The PEC activity of Pd/TiO(2) NTs was investigated by decomposition of methylene blue (MB) and Rhodamine B (RhB). Because of formation Schottky junctions between TiO(2) and Pd, which significantly promoted the electron transfer and reduced the recombination of photogenerated electrons and holes, the Pd/TiO(2) NT electrode showed significantly higher PEC activities than TiO(2) NTs. Interestingly, an obvious synergy between two dyes was observed and corresponding mechanism based on facilitated transfer of electrons and holes as a result of a suitable energy level alignment was suggested. The findings of this work provide a fundamental insight not only into the fabrication but also utility of Schottky junctions for enhanced environmental remediation processes.  相似文献   

19.
We present a comparative study of two different ZnO porous film morphologies for dye-sensitized solar cell (DSSC) fabrications. Nanoparticulate ZnO was prepared by the doctor-blade technique starting from a paste containing ZnO nanoparticles. Nanoporous ZnO films were grown by a soft template-assisted electrochemical growth technique. The film thicknesses were adjusted at similar roughness of about 300 in order to permit a worthy comparison. The effects on the cell performances of sensitization by dyes belonging to three different families, namely, xanthene (eosin Y) and indoline (D102, D131, D149 and D205) organic dyes as well as a ruthenium polypyridine complex (N719), have been investigated. The mesoporous electrodeposited matrix exhibits significant morphological changes upon the photoanode preparation, especially upon the dye sensitization, that yield to a dramatic change of the inner layer morphology and increase in the layer internal specific surface area. In the case of indoline dyes, better efficiencies were found with the electrodeposited ZnO porous matrixes compared to the nanoparticulate ones, in spite of significantly shorter electron lifetimes measured by impedance spectroscopy. The observation is interpreted in terms of much shorter transfer time in the oxide in the case of the electrodeposited ZnO films. Among the tested dyes, the D149 and D205 indoline organic dyes with a strong acceptor group were found the most efficient with the best cell over 4.6% of overall conversion efficiency.  相似文献   

20.
The present work addresses effects associated with the electrolyte penetration kinetics into TiO(2) nanotube layers. In particular, it is shown that the electrolyte uptake kinetics affects the magnitude of the measured photoresponse. We demonstrate that for aqueous electrolytes the penetration of the electrolyte into a TiO(2) nanotubular layer is comparably slow and may take up to several hours. The electrolyte uptake kinetics can significantly be accelerated by UV illumination. We ascribe this to a light-induced change in the wetting properties on the inside of the TiO(2) nanotube surface. This effect can be exploited to achieve photo-induced filling of the nanotubes by a secondary material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号