首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new aromatic diamine monomer with four pendant trifluoromethyl groups, 2,2′-bis{3-[3,5-di(trifluoromethyl)phenyl]-4-[4-amino-phenoxy]phenyl}sulfone (3), was successfully synthesized through free-radical substitution, Suzuki coupling and nucleophilic substitution reactions using bis(4-fluorophenyl)sulfone and N-bromosuccinimide as starting materials. Then it was employed to prepare a series of fluorinated poly(ether sulfone imide)s (PESIs 5ac) with various commercial aromatic dianhydrides via a one-step high-temperature polycondensation. These polymers could be easily dissolved in some strong polar organic solvents, such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide, chloroform, dichloromethane and tetrahydrofuran at room temperature. Flexible and transparent films can be obtained easily by solution casting. They had high thermal stability and didn't show significant weight loss up to temperature of approximately 530 °C in nitrogen and air atmospheres. They also revealed low dielectric constants with the values in the range of 2.74–2.90 at 1 MHz measured for their capacitance.  相似文献   

2.
A novel interlamellar surface modification of layered double hydroxides (LDHs) via covalent bonding by toluene-2,4-di-isocyanate (TDI) has been successfully obtained, and poly(vinyl chloride) (PVC)/TDI-modified LDH nanocomposites have been prepared via solution intercalation process. After the interlamellar modification, TDI was grafted to the surface hydroxyl groups of LDHs with nitrate, dodecyl sulfate or stearate anion as counterion anion. The structures of the TDI-modified LDHs and the nanocomposites were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectra, and transmission electron microscopy (TEM) techniques. The enhanced thermal stability of PVC/TDI-modified LDH nanocomposites was confirmed by means of conventional Congo Red test and dynamic thermogravimetric analysis (TGA). In addition, the thermal degradation mechanism was briefly discussed on the basis of the above experimental results.  相似文献   

3.
A nanocomposite with soluble high-performance poly(phthalazinone ether sulfone ketone) (PPESK) as matrix and multi-walled carbon nanotube buckypaper (MWCNT-BP) as reinforcement was fabricated by hot-press processing. The morphologies, dynamic and static mechanical behavior, thermal stability of the MWCNT-BP/PPESK composites were studied using scanning electron microscope (SEM), dynamic mechanical analyzer (DMA) and thermogravimetric analyzer (TGA). SEM microphotographs revealed a high impregnation degree of the MWCNT-BP/PPESK composites. Dynamic and static mechanical analysis revealed that the nanocomposites possessed high storage modulus, and good retention rate of mechanical strength even at 250 °C, which is mainly attributed to satisfied impregnation and strong interactions between MWCNT-BP and PPESK. Thermogravimetric analysis exhibited that the nanocomposites had excellent thermal stability. These investigations confirm that MWCNT-BP can be effectively used to manufacture high-loading CNT/PPESK composites with improved properties.  相似文献   

4.
As a thermal management system, a sandwich construction was developed to have both superior thermal conductivity and structural integrity. The sandwich construction consists of a carbon foam core and unidirectional graphite/epoxy composite facesheets. An emphasis was put on enhancing the thermal conductivity of each phase of sandwich construction as well as interface between the phases. A commercially-available carbon foam was characterized mechanically and thermally. Property variation and anisotropy were observed with the highly conductive graphitic carbon foam. Co-curing of the composite facesheets with the carbon foam core was demonstrated to minimize the thickness of the adhesive layer between the facesheets and the core to produce the best construction of those tested. Comparison made with an adhesively bonded specimen shows that the co-curing is a more efficient method to enhance the through-thickness conductivity. Parametric studies with an analytic model indicate that degree of enhancement in the overall through-thickness conductivity of the sandwich construction from the enhancement of each component including the foam core, facesheet and the bonding methods.  相似文献   

5.
The mechanical and dynamic mechanical properties, morphology, melting and crystallization behavior, as well as thermal stability of poly(butylene succinate)/distillers grains (PBS/DG) composites with different DG contents were investigated. The tensile modulus, crystallization rate, and crystallinity of PBS in the composites were efficiently enhanced in the presence of DG. The thermogravimetric analysis of the PBS/DG composites showed that their flame retardancy leveled up. The scanning electron microscopy analysis of the PBS/DG composites indicated that the DG was not damaged during the melt processing. These results supported the application of DG as fillers in polymer composites. Consequently, this study opened a new application of DG and has potential to decrease the cost of PBS-based materials with a variety of enhanced properties.  相似文献   

6.
谭帼馨  廖景文  宁成云  张林 《功能材料》2011,42(Z3):398-400,404
以聚乙二醇双丙烯酸酯(PEGDA)为单体,过硫酸铵(APS)为引发剂,N,N'-亚甲基双丙烯酰胺(BIS)为交联剂,聚乙烯吡咯烷酮(PVP)为分散剂,在一定比例的壳聚糖多糖介质中,用分散聚合法制备P(PEGDA)凝胶微球.采用傅立叶红外光谱仪及扫描电镜对微球成分和形貌进行了表征,并研究了反应时间、反应温度、KCl用量和...  相似文献   

7.
采用阴离子配位聚合方法,合成了二氧化碳(CO2),环氧丙烷(PO)与马来酸酐(MA)的三元共聚物,聚碳酸亚丙酯马来酸酯 (PPCMA).采用复相乳液(W/O/W)溶剂挥发法制备了包裹水溶性模型药物葡萄糖(glucose)的可降解微球,并研究了壁材与囊心的比例、稳定剂明胶浓度、搅拌速率等因素对微球性能的影响.当v(PPCMA)∶v(glucose)=1∶2,gelatin质量分数为0.2%,第1次乳化搅拌速率为400r/min,第2次乳化搅拌速率为500r/min时,得到粒径较小、载药量和包封率分别为26.1%和76.1%的载药微球.  相似文献   

8.
A series of composites based on polylactide (PLA), have been prepared by melt-blending with multiwalled carbon nanotubes (MWNT) and Tri(1-hydroxyethyl-3-methylimidazolium chloride) phosphate (IP) functionalized MWNT (MIP). The morphology, thermal stability and burning behavior of the composites were investigated by Field Emission Scanning Electron Microscopy (FESEM), Thermogravimetric Analysis (TGA) and Cone Calorimeter Test (CCT), respectively. Significant improvement in fire retardant performance was observed for the PLA/MIP composite from CCT (reducing both the heat release rate and the total heat release) and TGA (increasing the char residue) compared to PLA/MWNT. SEM and Raman spectroscopy were utilized to explore the surface morphology and chemical structure of the char residues. It revealed that the catalytic charring effect of IP, the physical crosslinking effect of MWNT, and the combined effect of both IP and MWNT (forming continuous and compact char layers) were very efficient in improving the flame retarding properties of PLA/MIP composite.  相似文献   

9.
Carbon nanostructures were synthesized via a novel solvothermal reaction between ferrocene and sulfur. Carbon nanostructures were then added to poly styrene (PS) matrix. The thermal stability behavior of PS filled with carbon nanostructures were investigated by thermogravimetric analysis (TGA). Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, energy-dispersive X-ray (EDS) analysis and atomic force microscopy (AFM). The flame retardancy behavior of PS–carbon was studied by UL-94 analysis.  相似文献   

10.
Smooth, perfectly spherical, highly hydrophilic microspheres have been prepared from crosslinked poly(methyl methacrylate) microspheres by alkaline hydrolysis in ethylene glycol at elevated temperatures. These microspheres absorb varying quantities of water depending upon the extent of hydrolysis. Subcutaneous implantation studies on rabbits demonstrated that the microspheres are biocompatible. Implantation studies in the renal arteries of dogs demonstrated the occlusion effect produced by the microspheres. Microspheres could be made radiopaque by the incorporation of barium sulphate. Potential uses envisaged for these microspheres in the biomedical area are that of artificial emboli for endovascular embolization and as microcarriers for the growth and propagation of anchorage dependent mammalian cells.  相似文献   

11.
Continuous fluorinated amorphous carbon (a-C : F) films doped with nitrogen (a-C : F : N) were deposited by plasma enhanced chemical vapor deposition using CF4 and C2H2 gases as precursors with the addition of N2 gas. The surface morphologies, chemical compositions, deposition rates, thermal stability and mechanical properties of these films varied with the deposition parameters, including CF4 and N2 feed gas concentrations, processing pressure, plasma power and substrate temperature. With increasing N2 feed gas concentration, the nitrogen content of the a-C : F : N films increased to about 6 at.% and contributed to higher mechanical properties. After thermal annealing, the a-C : F films with higher fluorine contents exhibited more obvious fluorine release and extensive film thickness shrinkage, whereas the a-C : F : N films with higher contents of nitrogen doping yielded less composition variations, smaller thickness shrinkages, higher mechanical properties, and conclusively better thermal stability.  相似文献   

12.
采用简单的空气氧化法由实心炭微球制备中空结构的炭微球。通过场发射扫描电子显微镜、高分辨透射电子显微镜、X-射线衍射仪、拉曼光谱和热重分析仪对产物的形貌和结构进行表征。结果表明:中空炭微球的石墨化程度较低。在炭微球的空气热氧化过程中,反应温度对炭微球从实心到中空的结构演变起着关键性的作用,温度越高,中空炭微球的内径越大、壁越薄。其形成机理可认为是炭微球的曲率和结晶度协同作用的结果。亦即,实心炭微球进行热氧化时,其内部的大曲率和低结晶度更易氧化,以致形成中空炭微球。  相似文献   

13.
采用熔融共混法分别制备了凹凸棒黏土质量分数为1%、 3%和5%的纳米凹凸棒黏土(ATT)/聚乳酸(PLA)复合材料, 研究了ATT对PLA结晶性能和热稳定性能的影响。结果表明, ATT与PLA基体具有较好的相容性, 当ATT含量低于3%时, 可以均匀的分散在PLA基体中, 而达到5%时则会发生团聚。FTIR结果表明, ATT与PLA基体之间存在较强的相互作用。ATT可明显促进PLA的结晶, 起到异相成核的作用。ATT纳米颗粒的添加引起了PLA冷结晶峰向低温方向移动, 使冷结晶温度从114.4 ℃降低至103 ℃左右。含ATT体系结晶速率比纯PLA快, 表明ATT的加入可以促进PLA的结晶, 说明ATT是PLA有效的成核剂之一。添加ATT可明显加快PLA的结晶速率并减小球晶尺寸。当添加3%ATT时, ATT/PLA复合材料的热分解温度比纯PLA提高了11 ℃, 这主要是由于ATT/PLA网络密度的提高, 使ATT在PLA的降解过程中能够起到较好的阻隔作用, 抑制了PLA的降解自加速过程。  相似文献   

14.
Graphene, a single layer of carbon atoms in a two-dimensional lattice, has attracted considerable attention owing to its unique physical, chemical and mechanical properties. In particular, because of its excellent thermal properties such as high thermal conductivity and good thermal stability, graphene has been regarded as a one of the promising candidates for the reinforcing fillers on the polymer composites field. In this study, we prepared the poly(methyl methacrylate) (PMMA)/graphene oxide (GO) nanocomposite by a simple solution mixing process, and examined the thermal reinforcing effects of GO on a PMMA matrix. Using thermogravimetric analysis, differential scanning calorimeter, and thermal conductivity meter, we investigated the effects of GO on the thermal properties of PMMA/GO nanocomposites. With 3 wt% of GO loading, the glass transition temperature (Tg) of the PMMA/GO nanocomposite were increased by more than 7 degrees C and the thermal conductivity of which also improved 1.8 times compared to pure PMMA.  相似文献   

15.
Conductivity measurements reported previously for thin films of poly(divinylbenzene) have been interpreted in terms of a quantum mechanical tunneling conductivity mechanism. Quantum mechanical tunneling of carriers through thin spots (5–45 Å) in films having dielectric thickness of a few hundred Å is more consistent with the reported current-voltage-temperature characteristics than the previously suggested Richardson-Schottky mechanism.  相似文献   

16.
The thermal stability of the single-phase decagonal quasicrystal produced directly from the undercooled Al72Ni12Co16 alloy melt was investigated by different heat treatments. The optical microscopy, TEM, X-ray powder diffractometer (XRD) and differential thermal analyzer (DTA) techniques were adopted to observe the microstructure and to characterize the phase composition, respectively. Based on the analyses of the X-ray diffraction patterns and the DTA curves, two modifications of the decagonal quasicrystal existed in the annealed samples, which have a close structural relationship to the decagonal quasicrystal.  相似文献   

17.
Plasticized poly(l-lactide)-silica nanocomposite materials have been successfully synthesized by sol-gel process. The resultant nanocomposites were characterized by infrared spectra (IR), X-ray diffraction (XRD), thermogravimetry (TG), Tensile testing and scanning electron microscope (SEM). IR measurements show that vibration of C-O-C group is confined by silica network. Also the crystallization of poly(l-lactide) is partly confined by silica network. The presence of even small amount of silica largely improves the tensile strength of the samples. TGA results reveal that the thermal stability of samples is improved with silica loading.  相似文献   

18.
Graphene nanosheets (GNSs) reinforced poly(butylene succinate) (PBS) nanocomposites are facilely obtained by a solution-based processing method. Graphene nanosheets, which are derived from chemically reduced graphite oxide (GO), are characterized by AFM, TEM, XRD and Raman spectra. The state of dispersion of the GNSs in the PBS matrix is examined by SEM observations that reveals homogeneous distribution of GNSs in PBS matrix. A 21% increase in tensile strength and a 24% improvement of storage modulus are achieved by addition of 2.0 wt% of GNS. The electrical conductivity and thermal stability of the graphene-based nanocomposite are also improved. DSC measurement indicates that the presence of graphene sheets does not have a remarkable impact on the crystallinity of the nanocomposites. Therefore, the high performances of the nanocomposites are mainly attributed to the uniform dispersion of GNSs in the polymer matrix and strong interfacial interactions between both components.  相似文献   

19.
Novel N1,N3,N5-tris(9,9-diphenyl-9H-fluroen-2-yl)-N1,N3,N5-triphenylbenzene-1,3,5-triamine (TFADB) was synthesized and characterized as a hole-injecting material (HIM) for organic light-emitting devices (OLEDs). By incorporating fluorene group TFADB shows a high glass-transition temperature Tg > 168 °C, indicative of excellent thermal stability. TFADB-based devices exhibited the highest performance in terms of the maximum current efficiency (6.0 cd/A), maximum power efficiency (4.0 lm/W), which is improved than that of the standard device based on 4-4′-4″Tris(N-(naphthalene-2-yl)-N-phenyl-amino)triphenylamine (2T-NATA) (5.2 cd/A, 3.6 lm/W). This material could be a promising hole-injecting material, especially for the high temperature applications of OLEDs and other organic electronic devices.  相似文献   

20.
In this paper, nano-sized Mg–Al layered double hydroxide (LDH) was synthesized by a fast nucleation and slow aging method. The structures of LDH were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and photon correlation spectroscopy (PCS). Poly(vinyl alcohol) (PVA) nanocomposites with different LDH loadings were prepared by water solution casting method. TEM observations show that the LDH nanoplatelets are uniformly dispersed in the PVA matrix. Tensile tests indicate that the elastic modulus and the tensile strength of PVA are improved by about 15% and 54%, respectively, when incorporating with 2 wt% LDH. The improvement of mechanical properties of PVA can be attributed to fine dispersion of LDH, good compatibility and strong interaction between PVA and LDH. In addition, the presence of LDH decreases the decomposition rates at the second stage and improves the amount of residues of PVA. Meanwhile, the transparency of the nanocomposite films is maintained compared with neat PVA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号