首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A soft lithography technique was used to introduce surface patterns on the surface of sintered bioactive glass substrates. Osteoblast‐like MG‐63 cells and rat mesenchymal stem cells (rMSC) seeded on micropatterned bioactive glass surfaces showed different behavior with rMSC exhibiting a better initial attachment than MG‐63 cells. Both cytoskeleton formation and cell spreading of rMSC were supported by the bioactive surfaces. In addition, the structured surfaces seemed to guide MG‐63 cells to a larger extent than rMSC. The in vitro results are important considering the continuous development of bone tissue scaffolds based on silicate bioactive glasses.  相似文献   

2.
Topographical patterns endow material surfaces with unique and intriguing physical and chemical properties. Spontaneously formed wrinkling has been harnessed to generate surface topography for various functionalities. Despite promising applications in biomedical devices and robot engineering, the friction behavior of wrinkling on curved surfaces remains unclear. Herein, wrinkled surfaces are induced by sputtering metals on soft polymer microspheres. The wrinkle morphologies and length scales can be controlled precisely by tailoring the microsphere radius (substrate curvature) and film thickness. The wrinkled surfaces exhibit controlled friction property, depending on the wrinkling patterns and length scales. An increase in friction force with increasing surface roughness is generally found for dimple patterns and labyrinth patterns. The dimple patterns show the lowest friction due to strong curvature constraint. The herringbone patterns exhibit apparent friction anisotropy with respect to topographic orientation. These results will guide future design of wrinkled surfaces for friction by harnessing substrate curvature.  相似文献   

3.
Topographic patterns are known to affect cellular processes such as adhesion, migration and differentiation. However, the optimal way to deliver topographic signals to provide cells with precise instructions has not been defined yet. In this work, we hypothesize that topographic patterns may be able to control the sensing and adhesion machinery of cells when their interval features are tuned on the characteristic lengths of filopodial probing and focal adhesions (FAs). Features separated by distance beyond the length of filopodia cannot be readily perceived; therefore, the formation of new adhesions is discouraged. If, however, topographic features are separated by a distance within the reach of filopodia extension, cells can establish contact between adjacent topographic islands. In the latter case, cell adhesion and polarization rely upon the growth of FAs occurring on a specific length scale that depends on the chemical properties of the surface. Topographic patterns and chemical properties may interfere with the growth of FAs, thus making adhesions unstable. To test this hypothesis, we fabricated different micropatterned surfaces displaying feature dimensions and adhesive properties able to interfere with the filopodial sensing and the adhesion maturation, selectively. Our data demonstrate that it is possible to exert a potent control on cell adhesion, elongation and migration by tuning topographic features’ dimensions and surface chemistry.  相似文献   

4.
An understanding of the biological response at material surfaces is a key biomaterials research area. Inflammation, tissue repair and regeneration are hallmarks of this response. Macrophages are long-lived and versatile cells and have a pivotal role at surfaces of implanted medical devices. The present review provides an update on macrophage behaviour at material surfaces. The interactions between cells and material surfaces are dynamic processes which require additional experimental models with different degrees of environmental complexity. It is concluded that both modifications of material surface properties and cellular signalling pathways will provide strategies for optimising the performance of biomedical devices.  相似文献   

5.
There exist many optical lithography techniques for generating nanostructures on hard, flat surfaces over large areas. However, few techniques are able to create such patterns on soft materials or surfaces with pre-existing structure. To address this need, we demonstrate the use of parallel optical trap assisted nanopatterning (OTAN) to provide an efficient and robust direct-write method of producing nanoscale features without the need for focal plane adjustment. Parallel patterning on model surfaces of polyimide with vertical steps greater than 1.5?μm shows a feature size uncertainty better than 4% across the step and lateral positional accuracy of 25?nm. A Brownian motion model is used to describe the positional accuracy enabling one to predict how variation in system parameters will affect the nanopatterning results. These combined results suggest that OTAN is a viable technique for massively parallel direct-write nanolithography on non-traditional surfaces.  相似文献   

6.
We report here a novel and simple buckling-based multiscale patterning of negative photoresist films which were subsequently pyrolyzed to yield complex micro-patterned carbon surfaces. Unlike other polymers, the use of a photoresist layer allows the overall pattern definition by photolithography on which the geometry and length scale of the buckling-instability are superimposed. The photoresist film swells anisotropically during developing and buckles after subsequent drying due to the difference in the shrinkage of the hard cross-linked layer on top of a softer native pre-polymer. We studied the conditions for the formation of a wide variety of complex, fractal buckling patterns as well as directionally aligned zigzag patterns over a large area. For example, the buckling diminished for the films below a critical thickness and after a prolonged UV exposure, both of which eliminate the softer under-layer. These patterned carbon substrates are also shown to be biocompatible for the cellular adhesion and viability by using L929 mouse fibroblast cells, thus indicating their potential use in bio-MEMS platforms with a conductive substrate. The buckled carbon patterns were found to be a better choice of a substrate for cell growth and viability as compared to flat and simply periodic patterned carbon surfaces.  相似文献   

7.
Realistic mathematical models are of great importance for studying the optical performance of the human eye. Light propagation algorithms provide robust methods to calculate field distributions inside a homogeneous medium, and thus they can be applied to the study of light patterns inside the anterior and posterior chambers of the eye. Dealing with real eyes implies using very short propagation distances together with highly refractive power surfaces. Thus, the general solutions of the field equation are used instead of paraxial Fresnel solutions. Conditions of application and sampling conditions of the method are clearly stated here. Numerical evaluation of the different refractive surfaces is also analysed. The main result is that a complete algorithm to obtain light patterns at any axial distance inside the eye is proposed. The method uses real corneal measures and axial distances together with crystalline models. Statistical results and individual predictions show the validity of the model. Application of the method is illustrated with the study of a bifocal intraocular lens.  相似文献   

8.
This paper examines the effects of nano-scale titanium coatings, and micro-groove/micro-grid patterns on cell/surface interactions on silicon surfaces. The nature of the cellular attachment and adhesion to the coated/uncoated micro-textured surfaces was elucidated by the visualization of the cells and relevant cytoskeletal & focal adhesion proteins through scanning electron microscopy and immunofluorescence staining. Increased cell spreading and proliferation rates are observed on surfaces with 50 nm thick Ti coatings. The micro-groove geometries have been shown to promote contact guidance, which leads to reduced scar tissue formation. In contrast, smooth surfaces result in random cell orientations and the increased possibility of scar tissue formation. Immunofluorescence cell staining experiments also reveal that the actin stress fibers are aligned along the groove dimensions, with discrete focal adhesions occurring along the ridges, within the grooves and at the ends of the cell extensions. The implications of the observed cell/surface interactions are discussed for possible applications of silicon in implantable biomedical systems.  相似文献   

9.
A four-step soft lithographic process based on micro-contact printing of organic monolayers, hyperbranched polymer grafting, and subsequent polymer functionalization results in polymer/n-alkanethiol patterns that direct the growth and migration of mammalian cells. The functional units on these surfaces are three-dimensional cell "corrals" that have walls 52+/-2 nm in height and lateral dimensions on the order of 60 microm. The corrals have hydrophobic, methyl-terminated n-alkanethiol bottoms, which promote cell adhesion, and walls consisting of hydrophilic poly(acrylic acid)/poly(ethylene glycol) layered nanocomposites that inhibit cell growth. Cell viability studies indicate that cells remain viable on the patterned surfaces for up to 21 days, and fluorescence microscopy studies of stained cells demonstrate that cell growth and spreading does not occur outside of the corral boundaries. This simple, chemically flexible micropatterning method provides spatial control over growth of IC-21 murine peritoneal macrophages, human umbilical vein endothelial cells, and murine hepatocytes.  相似文献   

10.
Micropatterned surfaces have been studied extensively as model systems to understand influences of topographic or chemical heterogeneities on wetting phenomena. Such surfaces yield specific wetting or hydrodynamic effects, for example, ultrahydrophobic surfaces, 'fakir' droplets, tunable electrowetting, slip in the presence of surface heterogeneities and so on. In addition, chemical patterns allow control of the locus, size and shape of droplets by pinning the contact lines at predetermined locations. Applications include the design of 'self-cleaning' surfaces and hydrophilic spots to automate the deposition of probes on DNA chips. Here, we discuss wetting on topographically patterned but chemically homogeneous surfaces and demonstrate mechanisms of shape selection during imbibition of the texture. We obtain different deterministic final shapes of the spreading droplets, including octagons, squares, hexagons and circles. The shape selection depends on the topographic features and the liquid through its equilibrium contact angle. Considerations of the dynamics provide a 'shape' diagram that summarizes our observations and suggest rules for a designer's tool box.  相似文献   

11.
Cost-effective and convenient methods for fabrication of patterned metallic nanostructures over the large (mm2) areas required for applications in photonics are much needed. In this paper, we demonstrate the fabrication of arrays of closed and open, loop-shaped nanostructures by a technique (nanoskiving) that combines thin-film deposition by metal evaporation with thin-film sectioning. These arrays of metallic structures serve as frequency-selective surfaces at mid-infrared wavelengths. Experiments with structures prepared using this technique demonstrate that a closed-looped structure has a single dominant resonance regardless of the polarization of the incident light, while open structures have resonances that are anisotropic with respect to the polarization of the electric field. Finite-difference time-domain (FDTD) simulations reproduce the scattering spectra of these frequency-selective surfaces, provide an explanation of the wavelength of the experimentally observed resonances, and rationalize their polarization dependence based on the patterns of current induced in the nanostructures.  相似文献   

12.
Tissue engineering research has been on going for many years, people are making all the effort to explore the cell functions in cellular level and even in molecular level. Making the cells functional in an in vitro environment is a preliminary goal for the implantation and repair of complicated tissues/organs. Fabricating artificial ECM to mimic the in vivo environment is an essential approach in tissue engineering. The work in this paper is to study how rat aorta smooth muscle cells (RASMCs) behave in two engineered cell culture scaffolds: gelatin- and fibronectin (FN)-coated micropatterns. The investigation on the initial attachment and further growth of SMCs cultured on gelatin- and FN-coated micropatterns was addressed. This study focused on both the characterization of gelatin and fibronectin assembly properties and cell responses to these two protein-coated micropatterns. Thin film patterns with gelatin and fibronectin coatings were fabricated on microscope glass slides using photolithography, electrostatic layer-by-layer self-assembly and lift-off (LbL-LO) technologies. In this work, the scaffolds were built up by commonly used polyelectrolyte materials and proteins through LbL process, containing cationic poly(diallyldimethylammonium chloride) (PDDA), poly(allylamine hydrochloride) (PAH), anionic poly(sodium 4-styrenesulfonate) (PSS), gelatin and fibronectin. The resulting polyelectrolyte thin films were characterized by contact angle (CA), quartz crystal microbalance (QCM), atomic force microscopy (AFM), and fluorescence microscopy. CA measurement shows the consistent hydrophylicity of gelatin surfaces in different number of layers with LbL deposition method. Different from our previous QCM measurement of gelatin, fibronectin does not show high electrostatic attraction to either positively or negatively charged polyelectrolytes, although it can be weakly assembled to both polyelectrolyte surfaces. AFM images show Gelatin- and FN-coated micropatterns are around 50-60 nm thick. RASMCs were cultured on these gelatin- and FN-coated micropatterns. It was observed that, for the cells cultured on gelatin-coated micropatterns, they initially landed on the gelatin-coated surface, not on the PDDA-coated surface in between. But further growth of the cells was affected by the shape of the patterns: strip pattern limited cell growth beyond the patterns, but square patterns could not. While, it was found interestingly, for the cells cultured on FN-coated micropatterns, SMCs initially landed on PDDA-coated surface, and then migrated to FN-coated both square and strip patterns. These findings indicate that both gelatin and fibronectin are adhesive proteins, but they have different effects on the initial attachment and later growth for SMCs.  相似文献   

13.
Mechanically durable superhydrophobic surfaces   总被引:1,自引:0,他引:1  
Development of durable non-wetting surfaces is hindered by the fragility of the microscopic roughness features that are necessary for superhydrophobicity. Mechanical wear on superhydrophobic surfaces usually shows as increased sticking of water, leading to loss of non-wettability. Increased wear resistance has been demonstrated by exploiting hierarchical roughness where nanoscale roughness is protected to some degree by large scale features, and avoiding the use of hydrophilic bulk materials is shown to help prevent the formation of hydrophilic defects as a result of wear. Additionally, self-healing hydrophobic layers and roughness patterns have been suggested and demonstrated. Nevertheless, mechanical contact not only causes damage to roughness patterns but also surface contamination, which shortens the lifetime of superhydrophobic surfaces in spite of the self-cleaning effect. The use of photocatalytic effect and reduced electric resistance have been suggested to prevent the accumulation of surface contaminants. Resistance to organic contaminants is more challenging, however, oleophobic surface patterns which are non-wetting to organic liquids have been demonstrated. While the fragility of superhydrophobic surfaces currently limits their applicability, development of mechanically durable surfaces will enable a wide range of new applications in the future.  相似文献   

14.
Micro‐ and nanotopographies can interfere with bacteria attachment, however, the interplay existing between surface chemistry and topography remains unclear. Here, self‐assembled spherical micrometer‐ silica and nanometer poly(methyl methacrylate) (PMMA)‐sized particles are used to make binary colloidal crystal (BCC) topographical patterns to study bacterial attachment. A uniform surface chemistry of allylamine plasma polymer (AAMpp) is coated on the top of the BCCs to study only the topography effects. The uncoated and coated BCCs are exposed to Pseudomonas aeruginosa, and the surfaces and bacteria are characterized using scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), and fluorescence microscopy. It is found that bacteria attachment to the uncoated BCCs is delayed and individual cells are attracted to the small particle regions of the patterns. Surprisingly, this phenomenon is also observed for the AAMpp‐coated BCCs, with bacteria attaching to the small particle regions of the pattern, in stark contrast to uniform flat films of AAMpp that are highly adhesive toward P. aeruginosa. Also, the overall levels of bacterial attachment are significantly reduced by the BCC patterns compared to controls. Thus, there is a trade‐off that exists between chemistry and topography that can be exploited to delay the onset of P. aeruginosa biofilm formation on surfaces.  相似文献   

15.
Auricular elastic cartilage is a potential source for lining of luminal surfaces of implantable vascular devices, such as stents and left ventricular assist devices with the purpose to improve their biocompatibility. Auricular chondrocytes are easily accessible, harvested, and isolated, and they have been shown to provide a strong adherent cell lining for left ventricular assist devices. Additionally, Dr. Rosenstrauch have shown that it is possible to genetically engineer auricular chondrocytes to produce antithrombogenic factors. Thus, implantable vascular devices, such as coronary stents covered with genetically engineered auricular chondrocytes might lower restenosis rates and provide a long-lasting biocompatible prosthesis. In this paper, to optimize the process of lining of artificial surfaces with auricular cartilage, we devise a mathematical model that describes the rate of cell division and growth of extracellular matrix as a function of the initial cell count, proximity to other cells, and the type of artificial surface. Our mathematical model was experimentally tested using two different cell cultures (auricular chondrocytes and dermal fibroblasts) seeded on different artificial surfaces (tc-treated polystyrene and aluminum foil). Excellent agreement between the model and experiment was obtained. This mathematical model can be used to, for example, determine the optimum number of initially seaded cells that would provide fastest coverage of a given artificial surface.  相似文献   

16.
Surface roughness measurement by means of polychromatic speckle elongation   总被引:2,自引:0,他引:2  
Lehmann P  Patzelt S  Schöne A 《Applied optics》1997,36(10):2188-2197
A new approach for determining the roughness of engineering surfaces that is applicable to industrial in-process measurements is introduced. Laser speckle patterns, arising from light scattered from rough surfaces that are illuminated by polychromatic laser light, are detected in the far-field region. The incoherent superposition of these light intensities and the angular dispersion cause the effect of speckle elongation. This is characterized by increasing speckle widths and leads to a radial structure of the speckle patterns. With increasing surface roughness, the elongation is replaced more and more by the decorrelation of the monochromatic speckle patterns for the different wavelengths. Such effects were detected with the CCD technique and analyzed by local autocorrelation functions of intensity fluctuations that were calculated for different areas of the speckle patterns. The results of surface-roughness determination by means of the speckle elongation effect are presented.  相似文献   

17.
Bioactive hydroxyapatite (HA) with addition of silicon (Si) in the crystal structure (silicon-doped hydroxyapatite (SiHA)) has become a highly attractive alternative to conventional HA in bone replacement owing to the significant improvement in the in vivo bioactivity and osteoconductivity. Nanometre-scaled SiHA (nanoSiHA), which closely resembles the size of bone mineral, has been synthesized in this study. Thus, the silicon addition provides an extra chemical cue to stimulate and enhance bone formation for new generation coatings, and the next stage in metallic implantation design is to further improve cellular adhesion and proliferation by control of cell alignment. Topography has been found to provide a powerful set of signals for cells and form contact guidance. Using the recently developed novel technique of template-assisted electrohydrodynamic atomization (TAEA), patterns of pillars and tracks of various dimensions of nanoSiHA were achieved. Modifying the parameters of TAEA, the resolution of pattern structures was controlled, enabling the topography of a substrate to be modified accordingly. Spray time, flow rate and distance between the needle and substrate were varied to improve the pattern formation of pillars and tracks. The 15 min deposition time provided the most consistent patterned topography with a distance of 50 mm and flow rate of 4 µl min−1. A titanium substrate was patterned with pillars and tracks of varying widths, line lengths and distances under the optimized TAEA processing condition. A fast bone-like apatite formation rate was found on nanoSiHA after immersion in simulated body fluid, thus demonstrating its high in vitro bioactivity. Primary human osteoblast (HOB) cells responded to SiHA patterns by stretching of the filopodia between track and pillar, attaching to the apex of the pillar pattern and stretching between two. HOB cells responded to the track pattern by elongating along and between the track, and the length of HOB cells was proportional to the gaps between track patterns, but this relationship was not observed on the pillar patterns. The study has therefore provided an insight for future design of next generation implant surfaces to control and guide cellular responses, while TAEA patterning provides a controllable technique to provide topography to medical implants.  相似文献   

18.
Zhang G  Wang D  Möhwald H 《Nano letters》2005,5(1):143-146
By using the upper single or double layers in colloidal crystals as masks during Au vapor deposition, various Au patterns have been successfully constructed on the surfaces of the lower spheres. The dimension and geometry of the Au patterns obtained are dependent on the orientation of the colloidal crystal templates. Our patterning procedure is independent of the curvature and chemical composition of the surfaces, which definitely pave a promising way to pattern highly curved surfaces.  相似文献   

19.
We report methods for the acquisition and analysis of optical images formed by thin films of twisted nematic liquid crystals (LCs) placed into contact with surfaces patterned with bio/chemical functionality relevant to surface-based assays. The methods are simple to implement and are shown to provide easily interpreted maps of chemical transformations on surfaces that are widely exploited in the preparation of analytic devices. The methods involve acquisition of multiple images of the LC as a function of the orientation of a polarizer; data analysis condenses the information present in the stack of images into a spatial map of the twist angle of the LC on the analytic surface. The potential utility of the methods is illustrated by mapping (i) the displacement of a monolayer formed from one alkanethiol on a gold film by a second thiol in solution, (ii) coadsorption of mixtures of amine-terminated and ethylene glycol-terminated alkanethiols on gold films, which leads to a type of mixed monolayer that is widely exploited for immobilization of proteins on analytic surfaces, and (iii) patterns of antibodies printed onto surfaces. These results show that maps of the twist angle of the LC constructed from families of optical images can be used to reveal surface features that are not apparent in a single image of the LC film. Furthermore, the twist angles of the LC can be used to quantify the energy of interaction of the LC with the surface with a spatial resolution of <10 microm. When combined, the results described in this paper suggest nondestructive methods to monitor and validate chemical transformations on surfaces of the type that are routinely employed in the preparation of surface-based analytic technologies.  相似文献   

20.
The aim of this study was to evaluate in vitro the inflammatory potential of endothelialized surfaces of polyethylene terephthalate (PET) and polytetrafluorethylene (PTFE) after ammonia gas plasma modification. HUVECs grown on polystyrene and HUVECs stimulated with tumor necrosis factor (TNF-alpha) were used as controls. At day 1 and day 7, surfaces were evaluated for U937 cells and HUVECs using flow cytometry and immunohistochemistry. Plasma-treated PET (T-PET) and treated PTFE (T-PTFE) increased U937 cell adhesion compared to the negative control but this was not statistically significant. Maximal adhesion of U937 cells to HUVEC was observed on TNF-alpha stimulated endothelium with significant differences between day 1 and day 7. There was a small increase in U937 cell adhesion to plasma-treated PET compared to PTFE on both day 1 and day 7, but this was not statistically significant. Immunohistochemical staining demonstrated two patterns of distribution for monocyte adhesion on materials. On T-PET the cells were positioned in clusters attached to HUVECs and on T-PTFE the cells were randomly distributed on HUVECs and material. The effects of plasma-treated PET and PTFE on HUVEC adhesion and proliferation were also studied. On day 1 there were slight increases in the growth of HUVECs on both of T-PET and T-PTFE but this was not statistically significant. On day 7, cell number increased significantly on all of surfaces compared to the negative control. The results demonstrate that the plasma treatment of PET and PTFE with ammonia improves the adhesion and growth of endothelial cells and these surfaces do not exhibit a direct inflammatory effect in terms of monocyte adhesion. Plasma-treated PTFE enhances HUVECs growth and was less adhesive for monocytes as compared with treated PET. The monocyte adhesion to endothelial cells on surfaces can be used as a tool for the evaluation of material surface modification and further to study the mechanisms of cell to cell interactions in response to surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号