首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Redox-dependent modifications of sulfhydryl groups within the two Cys4 zinc fingers of the estrogen receptor DNA-binding domain (ER-DBD) result in structural damage and loss of ER DNA-binding function, which parallels the situation observed in many ER-positive breast cancers. Quantitation of the redox status of cysteinyl thiols within ER-DBD employed cysteine-specific oxidants to induce varying degrees of oxidation in recombinant ER, followed by differential alkylation with the stable isotopic labeling reagents [12C2]-iodoacetic acid and [13C2]-bromoacetic acid. Subsequent proteolysis with LysC/Asp-N generated diagnostic peptides of which the C-terminal peptide of the second zinc finger is most strongly detected by mass spectrometry (MS) and serves as a suitable marker of ER-DBD redox status. Data were collected from two different MALDI-MS instruments: a time-of-flight and a linear ion trap (vMALDI-LIT). An analogous but larger synthetic peptide treated with three isotopic variants of the alkylating reagent modeled isotopic overlaps that might complicate the relative quantitation of cysteine oxidation. Despite the isotopic overlaps, excellent relative quantitation was achieved from MS data obtained from both instruments. This was also true of tandem MS/MS data from the vMALDI-LIT, which should facilitate selected reaction monitoring. Relative quantitation by MS also closely matched data from immunochemical methods.  相似文献   

2.
Several electrospray-mass spectrometry (ESI-MS)-based methods are available for determining the constant of association (K(a)) between a protein and a small ligand, but current MS-based strategies are not fully adequate for measuring K(a) of protein-protein interactions accurately. We expanded the application of ESI-MS-based titration to determine the strength of noncovalent interactions between proteins, forming a complex. Taking into account relative response factors (probability of being ionized, transmitted, and detected), we determined K(a) values of an equilibrium between dimers and tetramers at three different pH values (6.8, 3.4, and 8.4). We investigated the association of the lectin concanavalin A, whose dimer-tetramer ratio in the gas phase is affected by solution concentration and by pH. To calculate the constants of association in solution, we also utilized isothermal titration calorimetry (ITC) for a comparison with MS-based titration. At pH 6.8 and pH 8.4, the K(a) values measured by MS and by ITC were in agreement. ITC results allowed us to restrain the response factor to a value close to 4. At pH 3.4, we were able to measure the K(a) only by MS, but not by ITC because of limited sensitivity of calorimetry. Our investigation illustrates the great potential MS for calculating the binding strength of protein-protein interactions within noncovalent complexes. The main advantages of MS over ITC are its sensitivity (i.e., the required amount of sample is >100 times less than the one necessary for ITC), and the possibility to obtain precise information on composition of protein complexes, their stoichiometry, their subunit interactions, and their assembly pathway. Compared to previous investigations, our study shows the strong influence of response factors on determining accurate protein-protein association constants by MS.  相似文献   

3.
The nonspecific self-association of proteins in nanoflow electrospray ionization mass spectrometry (nanoES-MS), and the influence of experimental conditions thereon, are investigated using the protein ubiquitin (Ubq) as a model system. Extents of nonspecific protein association generally increase with protein concentration and, interestingly, with decreasing ES spray potential. The extent of self-association is also sensitive to the duration of the accumulation event in an external rf hexapole. Notably, the relative abundance of metal (Na+ and K+) adducts generally increases with the size of nonspecific Ubq multimer. This result suggests that the gaseous ions of monomeric and nonspecific multimeric Ubq have, on average, different ES droplet histories, with monomer ions originating earlier in the ES process than the nonspecific multimeric complexes. This finding forms the basis for a new method for distinguishing between specific and nonspecific protein complexes in ES-MS. A reporter molecule (Mrep), which does not bind specifically to the proteins and protein complexes of interest, is added to the ES solution at high concentration. The distribution of Mrep bound nonspecifically to gaseous ions of the proteins and protein complexes, as determined from the ES mass spectrum, is used to determine whether a given protein complex originates in solution or whether it forms from nonspecific binding during the ES process. The method is demonstrated in cases where the ions of protein complexes detected by nanoES-MS originate exclusively from nonspecific association, exclusively from specific interactions in solution, or from both specific and nonspecific interactions.  相似文献   

4.
Amide hydrogen/deuterium exchange is a powerful biophysical technique for probing changes in protein dynamics induced by ligand interaction. The inherent low throughput of the technology has limited its impact on drug screening and lead optimization. Automation increases the throughput of H/D exchange to make it compatible with drug discovery efforts. Here we describe the first fully automated H/D exchange system that provides highly reproducible H/D exchange kinetics from 130 ms to 24 h. Throughput is maximized by parallel sample processing, and the system can run H/D exchange assays in triplicate without user intervention. We demonstrate the utility of this system to differentiate structural perturbations in the ligand-binding domain (LBD) of the nuclear receptor PPARgamma induced upon binding a full agonist and a partial agonist. PPARgamma is the target of glitazones, drugs used for treatment of insulin resistance associated with type II diabetes. Recently it has been shown that partial agonists of PPARgamma have insulin sensitization properties while lacking several adverse effects associated with full agonist drugs. To further examine the mechanism of partial agonist activation of PPARgamma, we extended our studies to the analysis of ligand interactions with the heterodimeric complex of PPARgamma/RXRalpha LBDs. To facilitate analysis of H/D exchange of large protein complexes, we performed the experiment with a 14.5-T Fourier transform ion cyclotron resonance mass spectrometer capable of measuring mass with accuracy in the ppb range.  相似文献   

5.
A new mass spectrometry identifiable cross-linking strategy has been developed to study protein-protein interactions. The new cross-linker was designed to have two low-energy MS/MS-cleavable bonds in the spacer chain to provide three primary benefits: First, a reporter tag can be released from cross-link due to cleavage of the two labile bonds in the spacer chain. Second, a relatively simple MS/MS spectrum can be generated owing to favorable cleavage of labile bonds. And finally, the cross-linked peptide chains are dissociated from each other, and each then can be fragmented separately to get sequence information. Therefore, this novel type of cross-linker was named protein interaction reporter (PIR). To this end, two RINK groups were utilized to make our first-generation cross-linker using solid-phase peptide synthesis chemistry. The RINK group contains a bond more labile than peptide bonds during low-energy activation. The new cross-linker was applied to cross-link ribonuclease S (RNase S), a noncovalent complex of S-peptide and S-protein. The results demonstrated that the new cross-linker effectively reacted with RNase S to generate various types of cross-linked products. More importantly, the cross-linked peptides successfully released reporter ions during selective MS/MS conditions, and the dissociated peptide chains remained intact during MS(2), thus enabling MS(3) to be performed subsequently. In addition, dead-end, intra-, and inter-cross-linked peptides can be distinguished by analyzing MS/MS spectra.  相似文献   

6.
Selectivity, binding stoichiometry, and mode of binding of Tel01, distamycin A, and diethylthiocarbocyanine iodide (DTC) to the parallel stranded G4-quadruplex [d(T2G5T)]4 were investigated by ESI-MS. The first drug/quadruplex complexes observed by ESI-MS are described. Tel01, distamycin A, and DTC all form complexes with quadruplex DNA, but only Tel01 is completely selective for quadruplex versus duplex oligonucleotide under the conditions employed. Previous solution determinations of the binding mode of Tel01 and distamycin A to quadruplex oligonucleotides indicate that Tel01 interacts through end-stacking with guanine tetrads of quadruplex DNA, while distamycin A interacts by binding to quadruplex grooves. When these two different drug/quadruplex complexes are subjected to collisionally activated dissociation in a mass spectrometer, the observed fragmentation patterns are distinct. Tel01/quadruplex complexes undergo facile loss of drug and dissociation to single-strand oligonucleotide ions, while distamycin/quadruplex complexes fragment into single-strand oligonucleotide ions in which the drug molecule is retained. Dissociation patterns for DTC/quadruplex complexes are similar to those of distamycin; therefore, it is concluded that DTC interacts with [d(T2G5T)]4 through groove-binding. These ESI-MS results are applicable to both the identification and characterization of G-quadruplex interactive agents and may also be useful in probing unusual DNA structures.  相似文献   

7.
In this study we developed an inducible synthetic renilla luciferase protein-fragment-assisted complementation-based bioluminescence assay to quantitatively measure real time protein-protein interactions in mammalian cells. We identified suitable sites to generate fragments of N and C portions of the protein that yield significant recovered activity through complementation. We validate complementation-based activation of split synthetic renilla luciferase protein driven by the interaction of two strongly interacting proteins, MyoD and Id, in five different cell lines utilizing transient transfection studies. The expression level of the system was also modulated by tumor necrosis factor alpha through NFkappaB-promoter/enhancer elements used to drive expression of the N portion of synthetic renilla luciferase reporter gene. This new system should help in studying protein-protein interactions and when used with other split reporters (e.g., split firefly luciferase) should help to monitor different components of an intracellular network.  相似文献   

8.
Integral membrane proteins are among the most challenging targets for biomedical research as most important cellular functions are tied to these proteins. To analyze intrinsically their structure/function, their transduction mechanism, or both, these proteins are commonly expressed in cultured cells as recombinant proteins. However, it is not possible to check whether these recombinant proteins are homogeneously or heterogeneously expressed. Owing to difficulties in their purification, very few mass spectrometry studies have been performed with those proteins and even less with G-protein coupled receptors. Here we have set up a procedure that is highly compatible with MALDI-TOF mass spectrometry to analyze an intact histidine-tagged G-protein coupled, namely, the tachykinin NK-1 receptor expressed in CHO cells, solubilized and purified using cobalt or nickel chelating magnetic beads. The metal-chelating magnetic beads containing the receptor were directly spotted on the MALDI plate for analysis. SDS-PAGE, combined with in-gel digestion analyzed by mass spectrometry, Western blot ((His)6 and FLAG M2 tags), photoaffinity labeling with a radioactive agonist, and Edman sequencing, confirmed the identity of the purified protein as the human tachykinin NK-1 receptor. Mass spectrometry study of both the glycosylated and deglycosylated intact protein forms revealed the existence of several receptor species that is tempting to correlate with the unusual pharmacological behavior of the receptor.  相似文献   

9.
A new affinity chromatography method was developed by modifying a zonal elution method. The new method targets transient protein-protein interactions, such as those encountered during direct ligand transfer between the ligand transporter and its cognate receptor. A ligand-loaded transport protein is immobilized on the solid support, and a plug containing a putative receptor is flowed through the column. Elution profiles of proteins not interacting with the immobilized transporter can be approximated with a simple Gaussian curve, while the elution profiles of cognate receptors show significant delay and exhibit complex shape. Ligand transfer from the immobilized transporter molecules to the receptors is verified by both UV absorbance measurements and mass spectrometry. The sensitivity of the method is demonstrated using retinoic acid (RA) transfer from various isoforms of cellular RA binding proteins (CRABPs) and RA receptor γ (RARγ). Although these interactions have been hypothesized long ago to proceed via direct mechanism (i.e., via transient docking of the receptor and the transporter), the existing biophysical techniques failed to detect the presence of the transporter-receptor complexes. However, the modified zonal elution method provides unequivocal evidence of direct interaction between RARγ and one of the CRABP isoforms (CRABP II) during the ligand transfer to the receptor.  相似文献   

10.
Small-molecule screening techniques that employ mass spectrometry detection have been highly successful. However, the inability of conventional techniques, such as frontal affinity chromatography-mass spectrometry (FAC-MS), to easily identify weak binding molecules (i.e., Kd >or= 1 microM) using small amounts of target protein (subpicomole levels) represents a significant impediment to the widespread use of the method in the routine screening of low-abundance membrane receptors. This limitation is particularly notable in the early stages of the drug discovery process, as weak binding molecules can serve as useful leads for targets with no known ligand or when existing tight binding ligands have little therapeutic value. Competitive assay methods involving the displacement of an indicator ligand offer a more sensitive alternative, as the ability to generate an appreciable signal through various methods, including transient overconcentrations of indicator compounds, provides an unambiguous means for identifying weak affinity ligands. In this work we describe a continuous flow competitive assay based on the principles of FAC-MS that can be widely used to identify and characterize weak affinity ligands using low levels of the nicotinic acetylcholine receptor from Torpedo californica (nAChR). The validity of the assay is shown through the ability to identify nicotine (Kd approximately 1 microM) with columns containing <2 pmol of binding sites. Multiple injections of nicotine on a single column produce reproducible peaks in the signal of the indicator compound, epibatidine (Kd approximately 2 nM) showing minimal degradation in signal intensity between trials. The intensity of the peaks is dependent on the concentration of nicotine being injected, and binding curves can be generated through multiple injections on the same column. We investigate and optimize various parameters, including assay speed and concentrations, and demonstrate an automated assay format with the potential for use as a high-throughput screening tool. The ability to screen for weak binders of more pharmacologically relevant membrane receptors in a high-throughput screening format is discussed.  相似文献   

11.
A new approach to the search for residues of known and unknown estrogens in calf urine is presented. Following enzymatic deconjugation and solid-phase extraction, a minor part of the samples is screened for estrogen activity using a recently developed rapid reporter gene bioassay. The remainder of the bioactive extracts is analyzed by gradient liquid chromatography (LC) with, in parallel, bioactivity and mass spectrometric detection via effluent splitting toward a 96-well fraction collector and an electrospray quadrupole time-of-flight mass spectrometer (QTOFMS). The LC fractions in the 96-well plate are used for the detection of estrogen activity using the bioassay. The biogram obtained features a 20-s time resolution, and the suspect well numbers can be easily correlated with the LC/QTOFMS retention time. The mass spectral data from the thus assigned relevant parts of the chromatograms are background subtracted, followed by accurate mass measurement, element composition calculation, and identification. The method allows estrogen activity detection and identification of (un)known estrogens in urine at the 1-2 ng/L level, in compliance with current residue analysis performance for hormone abuse in cattle. The applicability of this LC/bioassay/QTOFMS approach for the identification of estrogens in real-life samples is demonstrated by the analysis of several calf urine samples, and preliminary data from a pig feed sample.  相似文献   

12.
A simple method for establishing whether complexes composed of small molecules detected by electrospray ionization mass spectrometry (ES-MS) originate from specific interactions in solution or nonspecific binding during the ES process is described. The technique, referred to as the nonspecific probe method, exploits the tendency of small molecules to bind nonspecifically to macromolecules during the ES process to establish the presence of specific noncovalent interactions. To implement the method, a macromolecule probe (P(NS)), which does not bind specifically to any of the components present in solution, is added prior to ES-MS analysis. The existence of specific small-molecule complexes is determined from an analysis of the measured distributions of the small molecules bound nonspecifically to P(NS). The principal assumption on which this methodology is based is that nonspecific binding of small molecules and their complexes to P(NS) during ES is a statistical (random) process. A mathematical framework for establishing the presence of specific heterocomplexes is presented. The reliability of the method for distinguishing specific from nonspecific small-molecule interactions is illustrated for peptide-antibiotic and metal ion-ligand interactions in water.  相似文献   

13.
In this study, we combined surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) with HgTe nanostructures as matrix for the detection of several proteins (α1-antitrypsin, trypsin, IgG, protein G) and their complexes. We investigated the effects of several parameters (the concentration and nature of surfactants and metal ions, the pH, and concentration of the analytes in the sample matrixes) on the sensitivity of the detection of these proteins and their complexes. The presence of stabilizing Brij 76 surfactant and Zn(II) ions allowed the detection of weak protein complexes, such as α1-antitrypsin-trypsin and IgG-protein G complexes, at the picomole level. We observed multiply charged states at m/z 72,160 ([α1-antitrypsin + trypsin + H](+)) and 86,585 ([IgG + protein G + 2H](2+)) for the α1-antitrypsin-trypsin and IgG-protein G complexes, respectively. To the best of our knowledge, detection of weak protein complexes and determination of their stoichiometry have not been demonstrated previously when a combination of SALDI-MS and nanostructures were used. This simple and reproducible SALDI-MS approach using HgTe nanostructures holds great potential for the detection of other proteins and their complexes.  相似文献   

14.
Endogenous estrogen plays a key role in the development of human breast cancer, yet the contribution of specific estrogen metabolites and patterns of estrogen metabolism remains unclear. To determine their individual and joint roles in breast carcinogenesis, it is necessary to be able to measure quantitatively each estrogen metabolite in epidemiologic and clinical biospecimens. In this report, we detail a sensitive, specific, accurate, and precise high-performance liquid chromatography-tandem mass spectrometry method utilizing selected reaction monitoring for measuring the absolute quantities of free (unconjugated) and total (conjugated + unconjugated) endogenous estrogens and estrogen metabolites in human serum from premenopausal and postmenopausal women. The method requires a simple sample preparation and only 0.5 mL of serum, yet is capable of quantifying simultaneously 15 estrogens and estrogen metabolites (EM): estrone and its 2-, 4-, and 16alpha-hydroxy and 2- and 4-methoxy derivatives; 2-hydroxyestrone-3-methyl ether; 17beta-estradiol and its 2-hydroxy and 2- and 4-methoxy derivatives; and estriol, 17-epiestriol, 16-ketoestradiol, and 16-epiestriol. The lower limit of quantitation for each EM was 0.4 pg on-column, equivalent to 8 pg/mL (26.5-29.6 fmol/mL) in the original serum sample. Calibration curves were linear over a 10(3)-fold concentration range. For a stripped serum sample containing 8 pg/mL of each EM, accuracy (percent recovery of a known added amount) ranged from 91 to 113%. Intrabatch precision (including hydrolysis, extraction, and derivatization steps) ranged from 7 to 30% relative standard deviation (RSD), and interbatch precision ranged from 8 to 29% RSD. Since distinct roles have been proposed for many of these estrogen metabolites, an accurate, precise, sensitive, and specific method for measuring their levels in circulation should suggest new approaches to breast cancer prevention, screening, and treatment.  相似文献   

15.
Time-course MALDI mass spectrometry immunoassays have been shown to be able to detect differences in the relative rates of binding of peptides, both from within and across epitopic domains, with antibodies in non-competitive and competitive experiments. A monoclonal antibody raised to target the HA1 subunit of the hemagglutinin antigen of type A H3N2 influenza strains is found to recognize two epitopic peptides comprising residues 109-125 and 158-166 that likely form part of an extended discontinuous domain. Time-course experiments show the smaller peptide binds antibody at a rate that is 5-fold faster than that for the larger peptide. A shorter segment of this larger peptide, comprised of residues 119-125, is also found to bind at twice the rate of the extended peptide. Studies of modified peptide variants and synthetic variants of HA peptide 119-125 has enabled important contact residues to be identified whose accessibilities in the native protein are in accord with the mass spectrometry results.  相似文献   

16.
Three different conformations of the ligand binding domain of the human estrogen receptor (ER-LBD) are observed for the native state when binding an agonist and when binding an antagonist. By conjugating ER-LBD conformation specific peptides to CdS nanoparticles, the three different states can be identified by anodic stripping voltammetry. This electrochemical sensor can detect and distinguish the binding of different ligands to the human estrogen receptor.  相似文献   

17.
Serine phosphorylation of insulin receptor substrate-1 (IRS-1) can regulate tyrosine phosphorylation of IRS-1 and subsequent insulin signaling. The 182 serine and 60 threonine residues in IRS-1 make position-by-position analysis of potential phosphorylation sites by mutagenesis difficult. Tandem mass spectrometry provides a more efficient way to identify phosphorylated residues in IRS-1. Toward this end, we overexpressed glutathione S-transferase-IRS-1 fusion proteins in E. coli and treated them in vitro with various kinases followed by identification of phosphorylation sites using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Nine phosphorylation sites were detected in the tryptic digests of middle and C-terminal regions of IRS-1 treated with protein kinase A or extracellular signal-regulated kinase 2. Of these sites, five have not previously been detected by any method and provide novel candidates for identification in cells or in vivo.  相似文献   

18.
Wu S  Birnbaumer M  Guan Z 《Analytical chemistry》2008,80(15):6034-6037
Phosphorylation plays vital roles in the regulation and function of the V2 vasopressin receptor (V2R), a G protein-coupled receptor (GPCR) that is responsible for maintaining water homeostasis in the kidney. Through a combination of immunoaffinity purification, immobilized metal affinity chromatography, and nanoflow liquid chromatography tandem mass spectrometry, we identified a novel phosphorylation site (Ser(255)) in the third intracellular loop of human V2R. We showed that the third intracellular loop could be phosphorylated in vitro by protein kinase A, but not by Akt kinase, although sequence motif analysis predicated otherwise. The analytical procedures and methodologies described in this study should be generally applicable for identifying the endogenous phosphorylation sites in other GPCRs, overcoming the limitations of conventional approaches such as sequence motif analysis and site-directed mutagenesis.  相似文献   

19.
20.
A continuous-flow analytical screening system is presented using electrospray mass spectrometry to measure the interaction of biologically active compounds with soluble affinity proteins. The biochemical detection system is based on a solution-phase, homogeneous assay. In a first step, compounds to be screened (e.g., biotinylated compounds, concentration range 10-1,000 nmol/L) are injected into a continuous-flow reaction system and allowed to react with the affinity protein (e.g., streptavidin, concentration range 3-48 nmol/L). Subsequently, a reporter ligand (fluorescein-labeled biotin 96 nmol/L) is added to saturate the remaining free binding sites of the affinity protein and the concentration of unbound reporter ligand is measured using electrospray MS in the selectedion monitoring mode. The presence of active compounds in the sample results in an increase of the concentration of unbound reporter ligands. The feasibility of a homogeneous MS-based biochemical assay is demonstrated using streptavidin/biotin and anti-digoxigenin/digoxin as model systems. Compared to radioactive or fluorescence-based biochemical assays, the present assay format does not require the synthesis and purification of labels. Various analytical conditions were investigated to determine the ability of MS to measure the biochemical interactions. The availability of a single ligand that can be detected at 10-50 nmol/L concentrations by electrospray MS is sufficient to set up the biochemical assay. For the biospecific interactions studies, detection limits of 10-100 nmol/L were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号