首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
茶叶减肥作用及其机理研究进展   总被引:1,自引:0,他引:1  
肥胖症是由多种因素共同作用引起的营养性代谢障碍性疾病,越来越多的研究表明茶叶具有一定的减肥作用。茶叶减肥作用的活性成分主要为儿茶素、咖啡因,这些成分可能通过增加机体能量消耗、改变机体脂类代谢、调节食欲等机理而起作用。本文综述了近年来国内外关于茶叶减肥作用的研究,并简要阐述了其减肥作用可能的成分及机理。  相似文献   

2.
Abstract

In the context of diseases of affluence, western diets have in the past years mainly been studied on their fat and sugar content and lack of dietary fiber. Yet, the more general aspect of food processing has recently sparked scientific interest as well. In addition, the gut microbiota have been put forward as an important link between diet, obesity and non-communicable diseases (NCD). Western dietary patterns, containing large amounts of processed foods might create an imbalance in the gut system by affecting gut bacteria and their metabolism. Here we discuss what has been already published regarding the relationship between several recently researched features of processed foods and the etiology of obesity and NCD. The addressed features concern micronutrient and energy density, several types of food additives and the generation of advanced glycation end products by thermal treatment during food processing. Overall, literature indicates that all discussed aspects can be linked to western ailments and that they can have a potential negative impact on human microbiota. Therefore, we propose that the thesis that a distressed gut microbiota is a mechanism that might explain how food processing features could harm human health is gaining empirical evidence. Future research will need to address the question whether the alteration of the gut microbiota is a direct or an indirect (via the host) effect. These conclusions are important assets in the fight against the continuing worldwide upsurge of obesity and NCD.  相似文献   

3.
近年来,随着人们的生活习惯向高脂膳食转变,高脂膳食诱发的食源性肥胖、心血管疾病、糖尿病等相关 慢性代谢疾病已经成为困扰全球的公共卫生问题。越来越多的研究表明,肠道微生态和高脂膳食诱发的代谢紊乱关 系密切。受膳食、遗传背景和生活方式等因素的影响,肠道微生态的组成存在着很大的个体差异。膳食不仅仅为宿 主提供营养物质,也是肠道微生物营养的来源,能影响肠道微生态的组成和功能。宿主的能量代谢、肠道通透性的 保持以及一些炎症反应和免疫反应均与肠道微生态的改变相关。本文综述了高脂膳食、肠道微生态和宿主健康之间 的相互影响及其可能的作用机理。虽然目前的研究结果还无法证实肠道微生态与高脂膳食诱发的相关慢性代谢疾病 是否存在因果关系,但肠道微生态与宿主健康之间的相互影响为肥胖及其相关代谢疾病的防治提供了新思路。  相似文献   

4.
BackgroundObesity is a serious health problem and the cause for social and economic burdens. Currently, there is still no cure for obesity, while the investment of time and money for one is huge. Recent years, the possibility of developing natural products from fruits and vegetables with bioactivities into anti-disease agents has become a hot spot in research. Thus, anthocyanins are increasingly causing more attention, as they have been proved to show anti-obesity effects. Furthermore, recent advances in biosynthesis of anthocyanins in microorganisms have illustrated a promising way in producing these valuable compounds in large scales.Scope and approachAnthocyanins have great importance in developing a cure for obesity and biosynthesis in microorganisms has high potential in their massive production. This review therefore highlights the recent advances in the anti-obesity effects of anthocyanins and their biosynthesis in microorganisms. We have comprehensively discussed the molecular mechanisms involved in the anti-obesity effects of anthocyanins, the physicochemical and physiological properties of anthocyanins, the suitability of anthocyanins in anti-obesity therapies as well as the possibility of biosynthesis in microorganisms in future application.Key findings and conclusionsAnthocyanins have shown anti-obesity effects through multiple mechanisms, and biosynthesis of anthocyanins in microorganisms could have extensive applications. Inhibiting lipid absorption, regulating lipid metabolism, increasing energy expenditure, suppressing food intake and regulating gut microbiota are major mechanisms involved. Moreover, anthocyanins are promising candidates in developing anti-obesity therapies. Further studies are required to explore therapeutic uses of anthocyanins in treating obesity and application of biosynthesis of anthocyanins in microorganisms in industries.  相似文献   

5.
褐色脂肪组织(brown adipose tissue,BAT)是重要的能量代谢组织,不同于白色脂肪组织(white adipose tissue,WAT)的能量储存功能,BAT具有显著的产热能力,是消耗能量的脂肪组织,此外,在特定条件下,WAT会向BAT表型转变,形成米色脂肪细胞,同样可以消耗能量,因此,产热脂肪是治疗肥胖及相关疾病的有效靶标。许多食物成分可提高产热脂肪功能,全谷物中含有的酚酸、花色苷、膳食纤维、类胡萝卜素、植酸、芦丁等成分,目前已被报道能够促进脂肪组织的产热能力。介绍产热脂肪细胞的基本功能特征和主要调节因素,总结全谷物功能成分通过调节产热脂肪细胞功能影响能量代谢的研究进展,为全谷物膳食调节肥胖和全谷物功能食品的进一步开发提供依据。  相似文献   

6.
Diet has gained scientific community attention due to the crucial role in health maintenance, but also in disease treatment, and essential in disease prevention. Several food and food components, particularly phenolic rich foods, have been investigated as they present themselves as putative functional foods. In the past decades, obesity has reached epidemic proportions and consequently, metabolic syndrome (a set of disorders as impaired glucose tolerance, insulin resistance, abdominal obesity, dyslipidemia and high blood pressure, which increase the risk of cardiovascular disease and diabetes) incidence is increasing worldwide at an alarming rate and this phenolic rich foods, specially berries have been investigated to their potential beneficial effect in this disorders.In the present work the chemistry of blueberries (BB) (fruits of some Vaccinium species) was summarised as well as the knowledge about bioavailability and biokinetic of anthocyanins from blueberries with particular emphasis on its implications in metabolic disorders.  相似文献   

7.
短链脂肪酸(short chain fatty acids, SCFAs)作为肠道微生物的重要代谢产物,将宿主饮食与肠道微生物之间复杂的相互作用关系有机地联系在一起。SCFAs是近年来微生物代谢产物与人体健康科研领域研究热点,SCFAs不仅作为肠道上皮细胞的重要能源物质,也是游离脂肪酸受体的天然配体,因此发挥着多种健康作用,如调节脂质代谢、免疫、炎症反应和食欲等。阐述了肠源性SCFAs前体物质的主要食物来源,详细探讨了参与SCFAs生成的肠道微生物及代谢途径,并提出了肠源性SCFAs的饮食调控策略。从化学结构上看,SCFAs是一类碳原子数小于7的挥发性有机酸,肠源性SCFAs主要包括乙酸、丙酸、丁酸,它们主要是由SCFAs前体物质在肠道菌群的酵解作用下转化生成。SCFAs前体物质的食物来源多种多样,不易消化的碳水化合物是SCFAs的主要食物前体,包含抗性淀粉、非淀粉多糖、低聚糖等。肠道中的多种微生物能够通过不同代谢途径独立或者协同利用SCFAs前体物质产生SCFAs。补充富含SCFAs前体物质的食物,不仅能够影响肠源性SCFAs的含量,还可选择性地促进肠道中有益菌的生长,从质和量上维护肠道微生态稳态、直接或者间接地调节机体多种生理功能,促进人体健康功能。希望可为预防和治疗相关代谢和免疫疾病提供新的思路。  相似文献   

8.
Identification of the gut microbiota as an environmental factor that modulates obesity and metabolic diseases has provided the medical and functional food industry with new targets to treat metabolic diseases. However, only limited knowledge about the mechanisms by which the gut microbiota contributes to these lifestyle diseases are known. The gut microbiota is involved in energy harvest from the diet, modulation of endocrine signalling, and promoting metabolic inflammation. This review will discuss how the gut microbiota is altered in obesity, some of the mechanisms by which it promotes disease development, and how pre- and probiotics may be used to improve metabolic diseases.  相似文献   

9.
肥胖作为摄食过剩介导代谢紊乱的一种典型的代谢综合征,发病率逐年增加,严重威胁人类健康.食物奖赏在摄食过量中扮演重要角色,对肥胖的发生、发展起关键作用.近几年的研究发现脑肠肽、瘦素、胰岛素和肠道微生物菌群可直接或间接通过肠-脑对话影响机体的食欲和体重,在肥胖进程中起着重要作用.本综述重点探讨肠-脑对话在食物奖赏中的作用及...  相似文献   

10.
11.
郭雪琦  吴涛  刘锐  张民 《食品科学》2016,37(23):267-272
长期摄入高脂膳食极易使机体产生氧化应激,出现炎症,增加肥胖、2型糖尿病等慢性代谢疾病的患病风险。来源于植物的天然水溶性色素花色苷具有抗氧化、抗肥胖、抗炎等多种生理活性,成为防治慢性代谢疾病的研究热点。本文对花色苷干预高脂膳食诱导肥胖的作用效果与可能机制的研究进展进行综述,旨在为花色苷在膳食防治慢性代谢疾病中的应用与天然活性物质的开发利用提供理论参考。  相似文献   

12.
The gut microbiota plays a prominent role in human health. Alterations in the gut microbiota are linked to the development of chronic diseases such as obesity, inflammatory bowel disease, metabolic syndrome, and certain cancers. We know that diet plays an important role to initiate, shape, and modulate the gut microbiota. Long‐term dietary patterns are shown to be closely related with the gut microbiota enterotypes, specifically long‐term consumption of carbohydrates (related to Prevotella abundance) or a diet rich in protein and animal fats (correlated to Bacteroides). Short‐term consumption of solely animal‐ or plant‐based diets have rapid and reproducible modulatory effects on the human gut microbiota. These alterations in microbiota profile by dietary alterations can be due to impact of different dietary macronutrients, carbohydrates, protein, and fat, which have diverse modulatory effects on gut microbial composition. Food‐derived phenolics, which encompass structural variants of flavonoids, hydroxybenzoic acids, hydroxycinnamic acids, coumarins, stilbenes, ellagitannins, and lignans can modify the gut microbiota. Gut microbes have been shown to act on dietary fibers and phenolics to produce functional metabolites that contribute to gut health. Here, we discuss recent studies on the impacts of phenolics and phenolic fiber‐rich foods on the human gut microbiota and provide an insight into potential synergistic roles between their bacterial metabolic products in the regulation of the intestinal microbiota.  相似文献   

13.
The development of obesity is related to the regulation of energy intake, energy expenditure, and energy storage in the body. Increasing energy expenditure by inducing lipolysis followed by fat oxidation is one of the alternatives which could help to reverse this increasingly widespread condition. Currently, there is no approved drug targeting on stimulation of energy expenditure available. The use of herbal medicines has become a preferred alternative, supported by the classical consensus on the innocuity of herbal medicine vs synthetic drugs, something that often lacks a scientific basis (ban on Ephedra, for example). The inclusion of functional food in the daily diet has also been promoted although its efficacy requires further investigation. This review summarizes the results of recent work focused on the investigation of edible plant materials targeted at various important pathways related to stimulation of energy expenditure. The aim is to evaluate a number of plants that may be of interest for further studies because of their potential to provide novel lead compounds or functional foods which may be used to combat obesity, but require further studies to evaluate their antiobesity activity in humans.  相似文献   

14.
Worldwide obesity has reached a pandemic proportion. World Health Organization (WHO) estimates that by 2020, two thirds of the global disease burden will be attributable to obesity and obesity associated complications. Existing anti-obesity drugs, affecting one of the fundamental processes of the weight regulation in human body, have displayed serious side effects which outweigh their beneficial effects. Clinical and non-clinical researchers in this area are now facing a challenge to search for non-pharmacological alternatives for the prevention of obesity. Dietary interventions and life style changes with enhanced physical activity are two such options. Considering the importance of dietary interventions, the present review highlights the role, significance and potential of functional food ingredients for the management of obesity and associated co-morbidities.  相似文献   

15.
BackgroundCurrent dietary and public health recommendations addressing obesity do not as yet include recommendations pertaining to the gut microbiome. As a corollary, no microbiome-related health claims made on foods have as yet been proposed.ScopeThe MyNewGut project aims, amongst others, to provide guidance for the establishment of dietary and public health recommendations related to the role microbiome in the onset and development of obesity. Moreover, the project's forthcomings should allow the compilation of a guidance document for microbiome-related health claims.Key findingsOf all the physiological effects resulting from changes in the microbiome, insulin resistance is the most direct diet-modifiable parameter related to obesity. Improving insulin resistance is considered to be the key health benefit conferred by the targeted modulation of the gut microbiome, through the development and application of foods containing microbiome-targeted fibers and micro-organisms.ConclusionsIn order to facilitate guidance for the development of public health and dietary recommendations, as well as for health claim substantiation related to the gut microbiome, foods containing microbiome-targeting dietary fibers and microorganisms will be developed and studies with these foods should provide for the total body of clinical evidence specifically addressing the central theme of ‘insulin resistance’ in obesity, still leaving ample room for the inclusion of other parameters of interest. The latter is pivotal since an impact of other parameters on obesity should be addressed as well, particularly in view of the multifaceted modes of action of the microbiome.  相似文献   

16.
Obesity is considered a major public health concern throughout the world among children, adolescents, as well as adults and several therapeutic, preventive and dietary interventions are available. In addition to life style changes and medical interventions, significant milestones have been achieved in the past decades in the development of several functional foods and dietary regimens to reduce this menace. Being a multifactorial phenomenon and related to increased fat mass that adversely affects health, obesity has been associated with the development of several other co-morbidities. A great body of research and strong scientific evidence identifies obesity as an important risk factor for onset and progression of several neurological disorders. Obesity induced dyslipidaemia, metabolic dysfunction, and inflammation are attributable to the development of a variety of effects on central nervous system (CNS). Evidence suggests that neurological diseases such as Parkinson's disease and Alzheimer's disease could be initiated by various metabolic changes, related to CNS damage, caused by obesity. These metabolic changes could alter the synaptic plasticity of the neurons and lead to neural death, affecting the normal physiology of CNS. Dietary intervention in combination with exercise can affect the molecular events involved in energy metabolism and synaptic plasticity and are considered effective non-invasive strategy to counteract cognitive and neurological disorders. The present review gives an overview of the obesity and related neurological disorders and the possible dietary interventions.  相似文献   

17.
BackgroundThe human gastrointestinal tract harbors hundreds of millions of microorganisms, which create a unique environment for each individual. The relationship between gut microflora and human health is being increasingly recognized, and the influence of gut microbiota on the host is well characterized, including maintenance of the body's energy metabolism and immune system. Gut microbiota have been found to be closely linked to obesity, allergy, diabetes, cancer or even some mental diseases. Diet can strongly affect human health, partly by modulating gut microbial composition and quantity.Scope and ApproachIn this review, the relationship between diseases and gut microbes and the effect of different dietary components on gut microflora are summarized. This paper mainly focused on how different diet structure such as high intake of dietary fiber, fat, protein and alcohol etc. may exert impact on specific diseases via gut microflora.Key findings and conclusionsSpecific diseases can be strongly affected by gut microflora and dietary nutrition plays an important role in affecting the composition of gut microflora for individuals since their birth. A bridge between diets and multiple diseases via gut microbiota is built in this review, hopefully to provide references for further investigation of how the diets affect human health via gut microflora and for development of functional foods targeting on gut microflora to solve some health problems.  相似文献   

18.
Although some investigators have hypothesized that ingestion of fructose from foods and beverages is responsible for the development of hyperlipidemia or obesity, a recent evidence-based review demonstrated that there was no relationship between the consumption of fructose in a normal dietary manner and the development of hyperlipidemia or increased weight in normal weight individuals. Because overweight and obese individuals may exhibit metabolic abnormalities such as insulin resistance, impaired glucose tolerance, hyperlipedemia, and/or alterations in gut hormones involved in appetite regulation, the findings of fructose studies performed in normal weight subjects may not be particularly relevant for overweight or obese subjects. A systematic assessment of the strength and quality of the studies and their relevance for overweight or obese humans ingesting fructose in a normal dietary manner has not been performed. The purpose of this review was to critically evaluate the existing database for a causal relationship between the ingestion of fructose in a normal, dietary manner and the development of hyperlipidemia or increased body weight in overweight or obese humans, using an evidence-based approach. The results of the analysis indicate that there is no evidence which shows that the consumption of fructose at normal levels of intake causes biologically relevant changes in triglycerides (TG) or body weight in overweight or obese individuals.  相似文献   

19.
The bioactive ingredients in commonly consumed foods include, but are not limited to, prebiotics, prebiotic‐like components, probiotics, and postbiotics. The bioactive ingredients in functional foods have also been associated with beneficial effects on human health. For example, they aid in shaping of gut microflora and promotion of immunity. These functional components also contribute in preventing serious diseases such as cardiovascular malfunction and tumorigenesis. However, the specific mechanisms of these positive influences on human health are still under investigation. In this review, we aim to emphasize the major contents of probiotics, prebiotics, and prebiotic‐like components commonly found in consumable functional foods, and we present an overview of direct and indirect benefits they provide on human health. The major contributors are certain families of metabolites, specifically short‐chain fatty acids and polyunsaturated fatty acids produced by probiotics, and prebiotics, or prebiotic‐like components such as flavonoids, polyphenols, and vitamins that are found in functional foods. These functional ingredients in foods influence the gut microbiota by stimulating the growth of beneficial microbes and the production of beneficial metabolites that, in turn, have direct benefits to the host, while also providing protection from pathogens and maintaining a balanced gut ecosystem. The complex interactions that arise among functional food ingredients, human physiology, the gut microbiota, and their respective metabolic pathways have been found to minimize several factors that contribute to the incidence of chronic disease, such as inflammation oxidative stress.  相似文献   

20.
Red meats: Time for a paradigm shift in dietary advice   总被引:1,自引:0,他引:1  
Recent evidence suggests dietary advice to limit red meat is unnecessarily restrictive and may have unintended health consequences. As nutrient-rich high quality protein foods, red meats can play an important role in helping people meet their essential nutrient needs. Yet dietary advice to limit red meat remains standard in many developed countries, even though red meat intakes appear to be within current guidelines. Meanwhile, energy intakes from processed foods have increased dramatically at the expense of nutrient-rich foods, such as red meat. Research suggests these food trends are associated with the growing burden of obesity and associated diseases in recent decades. It is time for dietary advice that emphasizes the value of unprocessed red meat as part of a healthy balanced diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号