首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A surge in interest in developing alternative renewable energy technologies has been observed in recent years. In particular, thermoelectrics has drawn attention because thermoelectric effects enable direct conversion between thermal and electrical energy, and provide power generation and refrigeration alternatives. During the past decade, the performance of thermoelectric materials has been considerably improved; however, many challenges continue to exist. Developing thermoelectric materials with superior performance means tailoring interconnected thermoelectric physical parameters-electrical conductivities, Seebeck coefficients, and thermal conductivities for a crystalline system. The objectives of this paper are to introduce the recent developments in semiconductor thermoelectric materials, and briefly summarize the applications of such materials.  相似文献   

2.
《Applied Energy》1986,24(2):139-162
The increased activity in attempts to develop improved thermoelectric semiconductors for use in the direct conversion of heat into electrical energy results mostly from research sponsorship by the US Military and NASA. Thermoelectric generators have no moving parts and are difficult to detect by visual, aural or thermal infrared means. Fossil multifuelled thermoelectric generators are the leading candidates for replacing standard US Military engine generator sets up to 1·5 kW under the SLEEP programme (Signature Suppressed Lightweight Electric Energy Plants). When coupled to an isotopic heat source, thermoelectric generators are able to operate reliably and unattended for long periods of time and have a proven performance record in supplying electrical power to the Lunar Experimental Package (Apollo Program) and in providing onboard electrical power to the Voyager spacecrafts.In both military and space applications any improvement in the thermoelectric generators' conversion efficiency would result in a saving in fuel—an important consideration. One way of improving the conversion efficiency is by increasing the so called ‘Figure of merit’ of the semiconductor material employed in the fabrication of the generators' thermocouples. In this paper an assessment is made of current thermoelectric materials; recent attempts to improve the figure of merit of existing materials are discussed and a number of new thermoelectric materials described.Significant headway has been made in reducing the lattice thermal conductivity of thermoelectric materials through the use of additives, small grain sizes or combinations of both. This development will result in substantial improvements in the thermoelectric figure of merit, provided the electrical properties can be maintained close to single crystal values. It is concluded that, because in the past the development of new thermoelectric materials has occupied long periods of time, even during periods of intense research activity, it is likely that established or ‘modified’ established materials will remain the mainstay of military and space applications at least for the forseeable future.  相似文献   

3.
ABSTRACT

In early 90s, Hicks and Dresselhaus proposed that low dimensional materials are advantages for thermoelectric applications due to the sharp features in their density-of-states, resulting in a high Seebeck coefficient and, potentially, in a high thermoelectric power factor. Two-dimensional (2D) materials are the latest class of low dimensional materials studied for thermoelectric applications. The experimental exfoliation of graphene, a single-layer of carbon atoms in 2004, triggered an avalanche of studies devoted to 2D materials in view of electronic, thermal, and optical applications. One can mix and match and stack 2D layers to form van der Waals hetero-structures. Such structures have extreme anisotropic transport properties. Both in-plane and cross-plane thermoelectric transport in these structures are of interest. In this short review article, we first review the progress achieved so far in the study of thermoelectric transport properties of graphene, the most widely studied 2D material, as a representative of interesting in-plane thermoelectric properties. Then, we turn our attention to the layered materials, in their cross-plane direction, highlighting their role as potential structures for solid-state thermionic power generators and coolers.  相似文献   

4.
Thermoelectric generator, which converts heat into electrical energy, has great potential to power portable devices. Nevertheless, the efficiency of a thermoelectric generator suffers due to inefficient thermoelectric material performance. In the last two decades, the performance of inorganic thermoelectric materials has been significantly advanced through rigorous efforts and novel techniques. In this review, major issues and recent advancements that are associated with the efficiency of inorganic thermoelectric materials are encapsulated. In addition, miscellaneous optimization strategies, such as band engineering, energy filtering, modulation doping, and low dimensional materials to improve the performance of inorganic thermoelectric materials are reported. The methodological reviews and analyses showed that all these techniques have significantly enhanced the Seebeck coefficient, electrical conductivity, and reduced the thermal conductivity, consequently, improved ZT value to 2.42, 2.6, and 1.85 for near-room, medium, and high temperature inorganic thermoelectric material, respectively. Moreover, this review also focuses on the performance of silicon nanowires and their common fabrication techniques, which have the potential for thermoelectric power generation. Finally, the key outcomes along with future directions from this review are discussed at the end of this article.  相似文献   

5.
In this review, an attempt was made to introduce the traditional concepts and materials in thermoelectric application and the recent development in searching high-performance thermoelectric materials. Due to the use of nanostructural engineering, thermoelectric materials with a high figure of merit are designed, leading to their blooming application in the energy field. One dimensional nanotubes and nanoribbons, two-dimensional planner structures, nanocomposites, and heterostructures were summarized. In addition, the state-of-the-art theoretical calculation in the prediction of thermoelectric materials was also reviewed, including the molecular dynamics (MD), Boltzmann transport equation, and non-equilibrium Green’s function. The combination of experimental fabrication and first-principles prediction significantly promotes the discovery of new promising candidates in the thermoelectric field.  相似文献   

6.
Numerical analysis has been carried out to figure out the performance of the thermoelectric micro-cooler with the three-dimensional model. A small-size and column-type thermoelectric cooler is considered and Bi2Te3 and Sb2Te3 are selected as the n- and p-type thermoelectric materials, respectively. The thickness of a thermoelectric element considered is 5–20 μm. The effect of parameters such as the temperature difference, the current, the thickness of a thermoelectric element, and the number of thermoelectric pairs on the performance of the cooler has been investigated. The predicted results show that the performance can be improved for the thick element with the large number of thermoelectric pairs or the small cross-sectional area of the element.  相似文献   

7.
热电材料—即实现热能和电能之间直接相互转换的一类功能材料,提供了一种制冷或发电的新方法—在解决能源和环境危机问题上正在扮演越来越重要的角色。传统的三维材料中,由于几个决定热电性能的关键物理参数相互关联,使得现有热电材料很难获得较高热电优值(ZT)。金属氧化物热电材料由于其良好的耐高温性能,是中高温区使用的理想候选者。如果能提高氧化钛基化合物的热电优值,那么氧化钛基化合物将是一类非常优秀的热电材料,因为其不仅具有优良的化学稳定性和热稳定性,而且原材料丰富、不含有毒元素以及制备工艺简单。纳米化能显著降低材料的热导率,是最近二十年提高热电性能的一条主要途径。同时,通过界面和化学组成调控增加与电学性能相关的功率因子也是一种继续提高热电性能的重要方法。本文综述了我们近期对氧化钛基热电材料的研究成果,包括对钛酸盐纳米管较大赛贝克(Seebeck)系数的实验发现,提出利用一维纳米材料独特的空心结构和纳米管层状特殊构造,将两个相关联的物理参数(热导率和电导率)分别调控;通过合成氧化钛基纳米复合材料,研究界面对载流子和声子散射的作用,提出通过载流子能量过滤效应提高其热电性能;采用尿素燃烧法和高温烧结等方法合成具有纳米结构和化学组成调控的氧化钛基化合物,认识化学组成以及界面对声电输运的作用规律;最后介绍能显著提高热电材料功率因子的载流子非对称迁移的理论。  相似文献   

8.
近年来,纳米技术逐渐被用来设计和制备硅锗(Si−Ge)热电材料和新型器件。为了提高Si−Ge热电材料的热电性能,研究学者利用各种纳米结构对Si−Ge热电材料进行了理论研究。其中,利用纳米线、超晶格和量子点等结构中的能带机理与散射机理,从理论上设计了降低Si−Ge纳米结构热导率和提高其功率因子的途径。同时,高效的Si−Ge纳米热电材料被制备出来,包括纳米块体材料的热电性能得到大幅度提高,室温下薄膜和纳米线的热电性能实现了重大突破。在高性能材料的基础上,新型Si−Ge纳米热电器件的研发除了关注于制备工艺优化外,还包括传热结构和原型器件的设计。  相似文献   

9.
碱金属热电转换器的电极材料   总被引:2,自引:0,他引:2  
碱金属热电转换器的电极材料对碱金属热电转换器的热电转换特征及其影响很大,选用何种材料作为碱金属热电转换器的电极材料一直是该领域众多科研人员的研究课题,该文主要从化学稳定性的角度对碱金属热电转换器的电极材料的选择进行了分析。  相似文献   

10.
When a thermoelectric generator (TEG) and its external load circuitry are considered together as a system, the codesign and cooptimization of the electronics and the device are crucial in maximizing the system efficiency. In this paper, an accurate TEG model is proposed and implemented in a SPICE-compatible environment. This model of thermoelectric battery accounts for all temperature-dependent characteristics of the thermoelectric materials to include the nonlinear voltage, current, and electrothermal coupled effects. It is validated with simulation data from the recognized program ANSYS and experimental data from a real thermoelectric device, respectively. Within a common circuit simulator, the model can be easily connected to various electrical models of applied loads to predict and optimize the system performance.   相似文献   

11.
The concept and approach aimed at the development of high-performance inexpensive converters of thermal energy, including solar energy, into electric energy have been proposed. This approach is based on the use of technical (metallurigical grade) semiconductor materials. A number of proposals have been formulated relating to the conditions of the impurity thermovoltaic effect and development of silicon thermoelectric cells.  相似文献   

12.
Most of the current thermal power-generation technologies must first convert thermal energy to mechanical work before producing electricity. In this study, a direct heat to electricity (DHE) technology using the thermoelectric effect, without the need to change through mechanical energy, was applied to harvest low-enthalpy thermal work. Such a power generation system has been designed and built using thermoelectric generator (TEG) modules. Experiments have been conducted to measure the output power at different conditions: different inlet temperature and temperature differences between hot and cold sides. TEG modules manufactured with different materials have also been tested. The power generator assembled with 96 TEG modules had an installed power of 500 W at a temperature difference of around 200 °C. An output power of over 160 W has been generated with a temperature difference of 80 °C. The power generated by the thermoelectric system is almost directly proportional to the temperature difference between the hot and the cold sides. The cost of the DHE power generator is lower than that of photovoltaics (PV) in terms of equivalent energy generated.  相似文献   

13.
高效分段温差电单偶仿真设计   总被引:2,自引:1,他引:1  
李影  曾葆青  赵媛媛 《节能技术》2009,27(6):534-537
由于温差电材料的热电性能随着温度变化而变化,优值系数ZT也随之改变,导致不同温差电材料的只在某一温度区间有较高的效率,因此,分段温差电元件概念被提出,据此可以在很大程度上提高热电转换效率。本文建立了基于P型BiSbTe\Zn4Sb3\CeFe4Sb12、N型Bi2Te3\GoSh3半导体分段温差电单偶模型异进行了ANSYS有限元分析。在对分段温差电元件长度比、截面比及负载电阻均进行优化后,得到在冷端温度为298K,热端温度为973K、873K、773K、673K时的理论转换效率分别为15.2%、13.8%、12.1%、10.6%。  相似文献   

14.
Solid-state thermoelectric energy conversion devices attract broad research interests because of their great promises in waste heat recycling, space power generation, deep water power generation, and temperature control, but the search for essential thermoelectric materials with high performance still remains a great challenge. As an emerging low cost, solution-processed thermoelectric material, inorganic metal halide perovskites CsPb(I1–xBrx)3 under mechanical deformation is systematically investigated using the first-principle calculations and the Boltzmann transport theory. It is demonstrated that halogen mixing and mechanical deformation are efficient methods to tailor electronic structures and charge transport properties in CsPb(I1–xBrx)3 synergistically. Halogen mixing leads to band splitting and anisotropic charge transport due to symmetry-breaking-induced intrinsic strains. Such band splitting reconstructs the band edge and can decrease the charge carrier effective mass, leading to excellent charge transport properties. Mechanical deformation can further push the orbital energies apart from each other in a more controllable manner, surpassing the impact from intrinsic strains. Both anisotropic charge transport properties andZT values are sensitive to the direction and magnitude of strain, showing a wide range of variation from 20% to 400% (with a ZT value of up to 1.85) compared with unstrained cases. The power generation efficiency of the thermoelectric device can reach as high as approximately 12% using mixed halide perovskites under tailored mechanical deformation when the heat-source is at 500 K and the cold side is maintained at 300 K, surpassing the performance of many existing bulk thermoelectric materials.  相似文献   

15.
The temperature distribution of a thermoelectric cooler under the influence of the Thomson effect, the Joule heating, the Fourier’s heat conduction, and the radiation and convection heat transfer is derived. The influence of the Thomson effect on the temperature profiles, on the fraction of the Joule’s heat that flows back to the low-temperature side, and consequently on the maximum attainable temperature difference and the maximum allowable heat load are emphasized and explored. The results suggest that the cooling efficiency of a thermoelectric cooler can be improved not only by increasing the figure-of-merit of the thermoelectric materials but also by taking advantage of the Thomson effect. A possible development direction for the thermoelectric materials is thus given.  相似文献   

16.
The current status of materials research for high-temperature thermoelectric energy conversion is reviewed. Two general classes of materials show promise for high temperature figure of merit (Z) values, viz, the rare-earth chalcogenides and the boron-rich borides. The electronic transport properties of the rare-earth chalcogenides are explicable on the basis of degenerate or partially degenerate n-type semiconductors. Boron and boron-rich borides exhibit p-type hopping conductivity, with detailed explanations proposed for the transport differing from compound to compound. Some discussion is presented on the reasons for the low thermal conductivities in these materials. Also, ZTs greater than one appear to have been realized at high temperature in many of these compounds.  相似文献   

17.
在研究单层ZrNCl和HfNCl材料热电性能的基础上,搭建温差发电模型,研究不同规格温差发电模块的输出性能,然后与其他学者研究的温差发电模型及热电材料的热电转换效率进行对比分析.结果表明:在低温区和中温区,单层ZrNCl的热电转换效率更高.温差发电模块的输出功率随温差发电模块横截面积和热电单元对数的增大而增大.单层Zr...  相似文献   

18.
Thermoelectric devices are solid‐state devices. Semiconductor thermoelectric cooling, based on the Peltier effect, has interesting capabilities compared to conventional cooling systems. In this work second law analysis of thermoelectric coolers has been done with the help of exergy destruction. In the first part, performance of single‐stage thermoelectric coolers and multi stage thermoelectric coolers has been compared for same number of thermoelectric elements i.e. 50. The performance parameters considered to compare their performance are rate of refrigeration, coefficient of performance, second law efficiency and exergy destruction. In second part, multi stage thermoelectric coolers have been analyzed for three different combinations of number of elements in two stages of thermoelectric coolers. The result of the analysis shows that the performance of a multi stage thermoelectric cooler which has total 50 elements gives best performance when it has 30 elements in hotter side and 20 elements in colder side out of the three cases considered. The comparison of single‐stage thermoelectric cooler and multistage thermoelectric cooler shows that for same number of elements rate of refrigeration (ROR) of single‐stage thermoelectric cooler is much higher than that of multi stage thermoelectric cooler. The COP remains same for both of them but the peak value of cop is obtained at much lower value of current supplied in multi stage thermoelectric cooler. Exergy destruction has constant values in single stage as well as multi stage thermoelectric cooler when the two stages have equal number of elements but it decreases with increase in x. The result of comparison of multistage thermoelectric cooler for three values of x i.e. 0.5, 1, 1.5 shows that the COP, ROR and second law efficiency improve and exergy destruction degrades with increase in x and the best performance has been obtained for x = 1.5 out of the three values considered. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents results of tests carried out to investigate the potential application of heat pipes and phase change materials for thermoelectric refrigeration. The work involved the design and construction of a thermoelectric refrigeration prototype. The performance of the thermoelectric refrigeration system was investigated for two different configurations. The first configuration employed a conventional heat sink system (bonded fin heat sink) on the cold side of the thermoelectric cells. The other configuration used an encapsulated phase change material in place of the conventional heat sink unit. Both configurations used heat pipe embedded fins as the heat sink on the hot side. Replacement of the conventional heat sink system with an encapsulated phase change material was found to improve the performance of the thermoelectric refrigeration system. In addition, it provided a storage capability that would be particularly useful for handling peak loads and overcoming losses during door openings and power-off periods. Results showed that the heat sink units employing heat pipe embedded fins were well suited to this application. Results also showed the importance of using a heat pipe system between the cold junction of the thermoelectric cells and the cold heat sink in order to prevent reverse heat flow in the event of power failure.  相似文献   

20.
We present the modeling and optimization of a new hybrid solar thermoelectric (HSTE) system which uses a thermosyphon to passively transfer heat to a bottoming cycle for various applications. A parabolic trough mirror concentrates solar energy onto a selective surface coated thermoelectric to produce electrical power. Meanwhile, a thermosyphon adjacent to the back side of the thermoelectric maintains the temperature of the cold junction and carries the remaining thermal energy to a bottoming cycle. Bismuth telluride, lead telluride, and silicon germanium thermoelectrics were studied with copper–water, stainless steel–mercury, and nickel–liquid potassium thermosyphon-working fluid combinations. An energy-based model of the HSTE system with a thermal resistance network was developed to determine overall performance. In addition, the HSTE system efficiency was investigated for temperatures of 300–1200 K, solar concentrations of 1–100 suns, and different thermosyphon and thermoelectric materials with a geometry resembling an evacuated tube solar collector. Optimizations of the HSTE show ideal system efficiencies as high as 52.6% can be achieved at solar concentrations of 100 suns and bottoming cycle temperatures of 776 K. For solar concentrations less than 4 suns, systems with thermosyphon wall thermal conductivities as low as 1.2 W/mK have comparable efficiencies to that of high conductivity material thermosyphons, i.e. copper, which suggests that lower cost materials including glass can be used. This work provides guidelines for the design, as well as the optimization and selection of thermoelectric and thermosyphon components for future high performance HSTE systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号